
1

A Framework of Composite Functional Gradient
Methods for Generative Adversarial Models

Rie Johnson and Tong Zhang

Abstract—Generative adversarial networks (GAN) are trained through a minimax game between a generator and a discriminator to
generate data that mimics observations. While being widely used, GAN training is known to be empirically unstable. This paper presents
a new theory for generative adversarial methods that does not rely on the traditional minimax formulation. Our theory shows that with a
strong discriminator, a good generator can be obtained by composite functional gradient learning, so that several distance measures
(including the KL divergence and the JS divergence) between the probability distributions of real data and generated data are
simultaneously improved after each functional gradient step until converging to zero. This new point of view leads to stable procedures for
training generative models. It also gives a new theoretical insight into the original GAN. Empirical results on image generation show the
effectiveness of our new method.

Index Terms—Generative adversarial models, functional gradient learning, neural networks, image generation.

F

1 INTRODUCTION

Given examples of real data x∗1, . . . , x
∗
n ∈ Rk from an

unknown distribution p∗ on Rk and a random variable
Z with a known distribution pz (e.g., a Gaussian), we are
interested in learning transformation G of variable Z so that
the distribution of the transformed variable G(Z) becomes
close to the distribution of real data. This is the setting
considered in generative adversarial networks (GAN) [10],
and G is often referred to as a generator.

While being widely used, GAN training is known to be
difficult due to its instability. This fact has led to numerous
studies, e.g., Wasserstein GAN (WGAN) and its extensions
[2], [11], [30] to pursue a different minimax objective, regular-
ization to tackle the issue of mode collapse and instability [5],
[38], f -GAN [34], unrolled GAN [28], AdaGAN [44], MMD
GAN [23], and so forth and references therein.

An important concept introduced by GAN is the idea
of adversarial learner, denoted here by d, which tries to
discriminate real data from generated data. GAN training
can be described as the following minimax game between a
discriminator d and a generator G:

min
G

max
d

[Ex∗∼p∗ ln d(x∗) + Ez∼pz ln(1− d(G(z)))] . (1)

It was shown in [10] that assuming the optimality of d, (1) is
equivalent to minimizing the Jensen-Shanon (JS) divergence
between the distribution of real data and that of generated
data.

Parameterizing G and d, the GAN training procedure
(Algorithm 4 below) seeks to find the solution to the minimax
formulation (1) by incrementally using a stochastic gradient
method, where a gradient step is taken with respect to the
model parameters of d and G. As suggested by [10], however,

A shorter version of the paper was presented at the 35-th International
Conference on Machine Learning (ICML 2018) [19].

• Rie Johnson is with RJ Research Consulting, Tarrytown, NY, USA.

• Tong Zhang is with HKUST, Hong Kong.

minimization of ln(1− d(G(z))) with respect to G above is
often replaced by maximization of ln(d(G(z))) with respect
to G, called logd trick, in practice. GAN with the logd trick,
though often more effective, can not directly be explained by
the theory based on the minimax formulation (1).

This paper provides a new theory for generative ad-
versarial methods which does not rely on the traditional
minimax formulation. We show that a good generator can
be learned where ‘goodness’ is measured by the divergence
between the distributions of real data and generated data, by
using functional gradient learning greedily, similar to gradient
boosting [8]. However, unlike standard gradient boosting,
which uses additive models, this paper considers functional
compositions of the following form

Gt(Z) = Gt−1(Z) + ηtgt(Gt−1(Z)), (t = 1, . . . , T) (2)

to obtain G(Z) = GT (Z). Here ηt is a small step size, and
each gt is a function to be estimated from data. An initial
generator G0(Z) ∈ Rk is assumed to be given. We learn from
data gt greedily from t = 1 to t = T so that improvement
in terms of the divergence between the two distributions is
guaranteed.

The first part of the theory considers the limit where the
step size ηt approaches 0 and thus considers a generator that
continuously evolves in time. We show that the algorithm
suggested by our analysis simultaneously minimizes multiple
distance measures such as the KL divergence and the JS
divergence, and more generally, f -divergences with certain
properties. The second part relaxes the condition on the step
size and thus considers a generator that evolves in discrete
steps.

Our theory leads to a new algorithm for learning gener-
ative adversarial models that is stable and effective. It also
provides a new theoretical insight into the original GAN
(either with or without the logd trick). The experiments show
the effectiveness of our new method on image generation in
comparison with GAN variants.

2

1.1 Preliminaries

Notation: Throughout the paper, we use x to denote data
in Rk. The probability density function of real data is denoted
by p∗. We use ‖·‖ to denote the vector 2-norm and the matrix
spectral norm. Given a scalar function h(x), we use ∇h(x)
to denote the gradient with respect to x. Note that we have
∇h(x) ∈ Rk as x ∈ Rk. Given a vector function g(x), we
use ∇g(x) to denote its Jacobi matrix. Convergences are all
pointwise.

Logistic regression: Our analysis will use the following
known facts on logistic regression. Let p∗ and p be the proba-
bility densities of real data and generated data, respectively,
and define D(x) by

D(x) := ln
p∗(x)

p(x)
. (3)

Then D is the analytical solution to a logistic regression
problem for discriminating real data and generated data;
i.e.,
D=argminD′

[
Ex∼p∗ ln(1+e−D

′(x))+Ex∼p ln(1+eD
′(x))

]
.

In practice, one can only approximate the theoretical op-
timum solution above by choosing from some class of
functions C using finite amounts of sample S∗ and S to
solve:

arg min
D′∈C

∑
x∈S∗

ln(1+e−D
′(x))

|S∗|
+
∑
x∈S

ln(1+eD
′(x))

|S|

 . (4)

Statistical consistency of such approximation has been
formally studied (e.g., [49]), but intuitively, approximation
improves with larger sample and more universal C.

2 CONTINUOUS THEORY

Our goal is to transform a random variable Z ∈ Rk with a
known distribution by (2):

Gt(Z) = Gt−1(Z) + ηtgt(Gt−1(Z)), (t = 1, . . . , T) ,

so that the probability density of the transformed variable
GT (Z) is close to p∗, the density of real data. The sequence
of transformation in (2) takes discrete steps from time t− 1
to time t, but in this section, let us instead take a small time
step δ and set ηt = δ so that we have

Gt+δ(Z) = Gt(Z) + δgt(Gt(Z)) . (5)

By letting δ → 0, we have a generator that evolves continu-
ously in time t that satisfies an ordinary differential equation

d(Gt(Z))

dt
= gt(Gt(Z)) . (6)

In this section, we study this continuously evolving generator.
In practice, we envision a learning process that starts with a
given initial generator G0 and proceeds with discretization
by alternating (5) and t← t+ δ with a small δ. Thus, having
step-size δ → 0 is an idealization that simplifies the analysis
and therefore helps to understand the problem. We will relax
this condition in the next section.

2.1 Analysis
The goal is to learn gt : Rk → Rk from data so that the
probability density of Gt(Z), which continuously evolves
by (6), becomes close to the density p∗ of real data as t
continuously increases. To measure the ‘closeness’, we use a
distance measure in the form of:

L(p) =

∫
`(p∗(x), p(x))dx, (7)

where ` : R2 → R is a pre-defined function so that L satisfies
L(p) = 0 if and only if p = p∗ and L(p) ≥ 0 for any
probability density function p.

From the following theorem, we will derive the choice of
gt(·) that guarantees that transformation (5) with δ → 0 can
always reduce/improve L(·).
Theorem 2.1. Using the definitions above, let pt be the proba-

bility density of random variable Gt(Z). Let `′2(ρ∗, ρ) =
∂`(ρ∗, ρ)/∂ρ. Then we have

dL(pt)

dt
=

∫
pt(x)∇x`′2(p∗(x), pt(x)) · gt(x)dx. (8)

The proof is given in Appendix A.
The theorem implies that for dL(pt)

dt to be negative so that
the distance L decreases/improves, we should choose gt(x)
to be:

gt(x) = −st(x)φ0(∇x`′2(p∗(x), pt(x))), (9)

where st(x) > 0 is an arbitrary scaling factor. φ0(u) is a
vector function such that φ(u) = u · φ0(u) ≥ 0 and that
φ(u) = 0 if and only if u = 0, e.g., (φ0(u) = u, φ(u) = ‖u‖22)
or (φ0(u) = sign(u), φ(u) = ‖u‖1). With this choice of gt(x),
we obtain
dL(pt)

dt
= −

∫
st(x)pt(x)φ(∇x`′2(p∗(x), pt(x))) dx ≤ 0 ,

that is, the distance L is guaranteed to improve unless
the equality holds. Moreover, this implies that we have
limt→∞

∫
st(x)pt(x)φ(∇x`′2(p∗(x), pt(x))) dx = 0. (Other-

wise, L(pt) would keep going down and become negative as
t increases, but L(pt) ≥ 0 by definition.) With a continuity
condition (see Appendix B.5), this further implies

lim
t→∞

pt(x)∇x`′2(p∗(x), pt(x)) = 0. (10)

We show below the cases where (10) can further lead to
limt→∞ pt(x) = p∗(x), i.e., the distribution of generated
data converges to that of real data provided that gt(x) is
chosen as in (9).

2.2 f -divergences
Let us consider a case where the distance measure L(·) is an
f -divergence. With a convex function f : R+ → R such that
f(1) = 0 and that f is strictly convex at 1, L(pt) defined by

L(pt) =

∫
p∗(x)f (rt(x)) dx where rt(x) =

pt(x)

p∗(x)
(11)

is called f -divergence1. Here we focus on a special case
where f is twice differentiable and strongly convex so that
the second order derivative of f , denoted here by f ′′, is

1. The conventions are: 0f(0/0) = 0, f(0) = limγ→0 f(γ), 0f(a/0) =
limρ→0 ρf(a/ρ) = a limβ→∞(f(β)/β); see e.g., [6].

3

f(γ) f ′(γ) f ′′(γ) γf ′′(γ)
KL − ln(γ) −1/γ 1/γ2 1/γ
rev KL γ ln(γ) ln γ + 1 1

γ
1

2JS ln 2
1+γ

+ γ ln 2γ
1+γ

ln 2γ
1+γ

1
γ(1+γ)

1
1+γ

H2 (
√
γ − 1)2 1− 1√

γ
1

2γ
√
γ

1
2
√
γ

TABLE 1: Examples of f -divergences: KL divergence, reverse
KL divergence, JS divergence×2, and squared Hellinger dis-
tance.

always positive, which includes commonly used measures
in Table 1. (11) implies `(ρ∗, ρ) = ρ∗f(ρ/ρ∗), and therefore

∇x`′2(p∗(x), pt(x)) = f ′′(rt(x))∇rt(x) . (12)

Using this and letting φ0(u) = u, (9) and (10) can be rewritten
respectively as

gt(x) = −st(x)f ′′(rt(x))∇rt(x) , (13)
lim
t→∞

pt(x)f ′′(rt(x))∇rt(x) = 0 . (14)

As f ′′(rt(x)) > 0 by assumption, (14) implies that if pt has
full support on Rk as t → ∞, then the pdf ratio rt(x) goes
to a constant for all x, which implies that pt → p∗, as t→∞.
Furthermore, (14) can be rewritten as

lim
t→∞

p∗(x)rt(x)f ′′(rt(x))∇rt(x) = 0 .

For some divergences, this can be further rewritten as follows
(see Table 1 for derivation):

KL divergence: lim
t→∞

p∗(x)∇x ln(rt(x)) = 0

reverse KL divergence: lim
t→∞

p∗(x)∇xrt(x) = 0

JS divergence: lim
t→∞

p∗(x)
1

1 + rt(x)
∇rt(x) = 0

squared Hellinger distance: lim
t→∞

p∗(x)∇x
√
rt(x) = 0

Thus, with these divergences, if p∗ has full support on Rk,
then the pdf ratio rt(x) goes to a constant for all x, which
implies that pt → p∗ as t→∞.

The convergence does not hold if p∗ (or pt as t→∞) does
not have full support. Moreover, for x such that p∗(x) = 0
and pt(x) > 0, r(x) goes to infinity, and r(x) = 0 when
pt(x) = 0 and p∗(x) > 0, which pushes f ′′(γ) to infinity
in some cases (see Table 1). Therefore, if p∗(x) or pt(x)
was zero in a substantial part of Rk, then f -divergences
might not be suitable for the purpose. In that case, it would
be rather sensible to either abandon f -divergences or work
with approximations – by approximating such distributions
with more manageable distributions that have full support.
Essentially, the former argues for WGAN [2], and we take
the latter approach. The practicality of the assumptions will
be further discussed later in Section 4 after the whole picture
is laid out.

2.2.1 Algorithms
To derive an algorithm from the results above, note that
the suggested gt(x) in (13) cannot be obtained from data in
practice as it depends on unknown densities p∗ and pt, but
that it can be approximated using the discriminator. Let D(x)
be the solution to the empirical logistic regression problem

(4) for discriminating real data from generated data at time t;
for simplicity, we omit the subscript t from all variables in
this section. Assuming that D(x) ≈ D(x) = ln p∗(x)

p(x) (3), let
us define r̃(x) so that

r̃(x) = exp(−D(x)) ≈ p(x)

p∗(x)
= r(x)

and replace r(x) in (13) with r̃(x). Then, as ∇r̃(x) =
−r̃(x)∇D(x), we obtain

g(x) = s(x)v(x)∇D(x),

where v(x) = r̃(x)f ′′(r̃(x)). Since v(x) > 0 (because
f ′′(·) > 0 by assumption), v(x) can be absorbed into the
data-dependent arbitrary scaling factor s(x). Thus, we obtain
an algorithm that repeats the following:

• Update discriminator D to minimize logistic loss (4).
• Update generatorG byG(z)← G(z)+δg(G(z)) with

g(x) = s(x)∇D(x).

This is essentially identical to the algorithm that we will
derive from our discrete analysis in the next section (Algo-
rithm 1), and so we will look into it in more detail there.
Nevertheless, it is worth noting that the obtained algorithm
can be regarded as simultaneously optimizing several distance
measures (all the f -divergences with strongly convex f such
as the KL divergence, JS divergence, and the Hellinger
distance). That is, even if we simply fix s(x) to a constant
(e.g., s(x) = 1) instead of customizing it for each measure,
the resulting algorithm optimizes several measures.

[34] extended GAN, which was shown to be associ-
ated with the JS divergence [10], to f -GAN for various
f -divergences. One difference here is that our analysis
indicates that a single algorithm (Algorithm 1) using a single
optimization objective (i.e., minimization of the logistic loss)
simultaneously optimizes multiple divergences. By contrast,
the f -GAN study proposed different optimization objectives
(leading to different computations) for minimizing different
divergences.

Least squares variant: The pdf ratio can also be estimated
by other optimization objectives such as least squares. Use
of the least squares estimate also leads to the generator
update procedure above, thus leading to the least squares
variant that replaces the discriminator update using logistic
regression with the update using the least squares objective.

3 DISCRETE THEORY

Now we turn to our discrete theory on the generator
GT (Z) obtained by taking discrete steps (2):

Gt(Z) = Gt−1(Z) + ηtgt(Gt−1(Z)), (t = 1, . . . , T) .

Our analysis in this section will include the effect of the
step size ηt and the deviation of the discriminator from the
optimum. Before we start, let us first consider how the results
of our continuous analysis apply towards this end.

Corollary 3.1. Let L(p) be the f -divergence L(p) =∫
p∗(x)f(r(x))dx where r(x) = p(x)

p∗(x)
with strongly

convex f as in Section 2.2. Let p and p′ be the densities

4

Algorithm 1 CFG: Composite Functional Gradient Learning of GAN

Input: real data x∗1, . . . , x
∗
n, initial generator G0(z) with generated data {G0(z1), . . . , G0(zm)}. Meta-parameter: T .

1: for t = 1, 2, . . . , T do
2: Dt(x)← arg minD

[
1
n

∑n
i=1 ln(1 + exp(−D(x∗i))) + 1

m

∑m
i=1 ln(1 + exp(D(Gt−1(zi))))

]
3: gt(x)← st(x)∇Dt(x) (st(x) is for scaling, e.g., most simply st(x) = 1)
4: Gt(z)← Gt−1(z) + ηtgt(Gt−1(z)), for some ηt > 0.
5: end for
6: return generator GT (z)

of random variables X and X ′, respectively, such that
X ′ = X + ηg(X). Let D(x) = ln p∗(x)

p(x) . Then we have:

L(p′) = L(p)− η
∫
p∗(x)v(x)∇D(x) · g(x) + j(η)

where v(x) = (r(x))2f ′′(r(x)) and j(η) = o(η) as η → 0.

Proof
dL(p)

dt
=

∫
p(x)f ′′(r(x))∇r(x) · g(x) dx (15)

= −
∫
p∗(x)v(x)∇D(x) · g(x) dx (16)

(15) is from Theorem 2.1 and (12), and (16) uses ∇r(x) =
−r(x)∇D(x) and p(x) = r(x)p∗(x). The desired result is
obtained by using (16) in the Taylor series of L(p′).

We have v(x) ≥ 0 as f is strongly convex, and so if j(η) is
small, ignoring the equality, this result would suggest that
the reduction of the f -divergence is guaranteed with g(x) =
s(x)D(x) with any s(x) > 0. Although this is essentially true
under appropriate conditions, making a formal statement
has some complication. Since we no longer assume η →
0, we need to bound j(η) as η increases. The regularity
conditions for this purpose would be rather complex in
the general f -divergence case. For this reason, we choose
to prove a rigorous statement only for the KL divergence,
which simplifies presentation. More details regarding this
choice are given in Appendix B.4.

We start with stating the definitions and assumptions.

3.1 Definitions and assumptions
3.1.1 Definitions
As before, let p∗ and p be the probability densities of real data
and generated data, respectively. We continue to use D(x) =

ln p∗(x)
p(x) from Section 1.1 to indicate the theoretical solution

to the logistic regression problem, and let discriminator D
be the solution to the empirical logistic regression problem
(4). We let L be the KL divergence:

L(p) =

∫
p∗(x) ln

p∗(x)

p(x)
dx.

3.1.2 Assumptions
Assumption 3.1 (Boundedness of the pdf ratio). |D(x)| is

bounded so that there exists a positive number B < ∞
such that |D(x)| ≤ B.

As D(x) = ln p∗(x)
p(x) , this assumption implies that both p∗(x)

and p(x) are nonzero everywhere. (However, also note that
we have in Appendix B an analysis with slightly more relaxed
assumptions that allow p without full support.)

Assumption 3.2 (ε-approximation condition on the dis-
criminator). Discriminator D satisfies the following ε-
approximation condition for some ε such that 0 ≤ ε <∞:∫

q∗(x) |D(x)−D(x)| dx ≤ ε

q∗(x) = p∗(x) max(1, ‖∇ ln p∗(x)‖) .

The optimal discriminator has been often assumed and we
slightly relax it by quantifying the deviation from the optimal
D(x). Note that ‘smallness’ of ε (corresponding to a strong
discriminator) is not required for proving our theorem below,
but it is required for deriving the convergence.

Nonzero smooth light-tailed p∗: We assume that p∗, the
density of real data, is nonzero and smooth with light tails;
we use a constant h0 > 0 that depends on the shape of p∗.
Common exponential distributions such as Gaussians and
Gaussian mixtures all satisfy the assumption. The precise
statements are given in Appendix B.2.2.

Remark: To put it intuitively, we assume that any data
point in Rk has some possibility (which changes smoothly)
of being real as well as some possibility of being generated,
and that D(x) indicates which is more likely.

Our assumptions are traditional and so make a sharp
contrast with the low dimensional manifold assumption of
[1], which led to WGAN [2]. We will discuss the practicality
of our assumptions later in Section 4 in the context of
developing practical algorithms for image generation.

3.2 Analysis

The goal is to approximate the true density p∗ on Rk through
Gt(Z) = Gt−1(Z) + ηtgt(Gt−1(Z)), (t = 1, . . . , T). Our
analysis here focuses on one step at time t, namely, random
variable transformation of Gt−1(Z) to Gt(Z). To simplify
notation, we assume that we are given a random variable
X with a probability density p on Rk. We are interested
in finding a function g : Rk → Rk, so that the transformed
variable X ′ = X+ηg(X) for small η > 0 has a density closer
to p∗, while closeness is measured by the KL divergence L(·).

The consequence of the following theorem shows that
with an appropriately chosen g(·), the transformation X →
X + ηg(X) can always reduce the KL divergence L(·), and
so transformation X + ηg(X) is an improvement from X .

Theorem 3.1. Under the assumptions in Section 3.1.2, let g :
Rk → Rk be a continuously differentiable transformation
such that ‖g(·)‖ ≤ a and ‖∇g(·)‖ ≤ b. Let p and p′ be
the probability densities of random variables X and X ′,
respectively, such that X ′ = X + ηg(X) where 0 < η <

5

min(1/b, h0/a). Then there exists a positive constant c
such that:

L(p′) ≤ L(p)− η
∫
p∗(x) ∇D(x) · g(x) dx+ cη2 + cηε.

The proof is given in Appendix B.
If ε is large, i.e., if the discriminator deviates from the

optimal discriminator by a lot, then cηε will dominate the
right-hand side of the inequality and so whether or not
L(p′) < L(p) is unknown, which means that the generator
may degrade. This is not surprising. ε can become large, for
example, when the sample is small or when the function
class from which the discriminator is chosen is poor.

To examine the dependency on η, let us assume that ε
is as small as η so that cηε does not dominate. Then, the
theorem implies that we should choose g(x) to be

g(x) = s(x)∇D(x)

where, as before, s(x) > 0 is an arbitrary scaling factor. With
this choice of g, and letting ε = η, we have

L(p′) ≤ L(p)− η
∫
p∗(x)s(x) ‖∇D(x)‖22 dx+ 2cη2. (17)

This means that L will be reduced for a sufficiently small η
unless the following functional gradient vanishes∫

p∗(x)s(x) ‖∇D(x)‖22 dx.

The vanishing condition implies thatD(x) is a constant when
p∗ has full support on Rk. In this case, the discriminator is
unable to distinguish the real data from the generated data.
Thus, it is implied that letting g(x) = s(x)∇D(x) makes the
probability density of generated data closer to that of real
data until the discriminator becomes unable to distinguish
the real data and generated data.

We note that taking g(x) = s(x)∇D(x) is analogous to
taking a gradient descent step of L(p) in the function space,
so that a step is taken to modify the function instead of
the model parameters. Therefore, Theorem 3.1 presents a
functional gradient view of variable transformation that can
always improve the quality of the generator — when the quality
is measured by the KL divergence between the real data and
the generated data.

If we repeat the process described above, Algorithm 1 is
obtained. We call it composite functional gradient learning of
GAN (CFG-GAN), or simply CFG. CFG forms gt using the
functional gradient, as suggested by Theorem 3.1. Also note
that the continuous theory with general f -divergences leads
to the CFG algorithm too, as shown earlier.

By cascading (17) from t = 1 to t = T , we obtain:

L(pT) ≤ L(p0)− η
T∑
t=1

∫
p∗(x)st(x)‖∇Dt(x)‖2dx+ 2Tcη2

where pT is the probability density of generated data after
updating the generator T times, and p0 is the density of
G0(Z). With η = 1/

√
T , this leads to

1

T

T∑
t=1

∫
p∗(x)st(x)‖∇Dt(x)‖2dx (18)

≤ (L(p0)− L(pT))/(Tη) + 2cη

= (L(p0)− L(pT))/
√
T + 2c/

√
T = O(1/

√
T) (19)

G0

g1

g2

+

g3

+

Input z

+

Output

G1

G2

G3

Fig. 1: Generator network automatically created by CFG or
ICFG with T = 3. ‘⊕’ indicates addition.

This implies limt→∞
∫
p∗(x)st(x)‖∇Dt(x)‖2dx = 0. (Other-

wise, (18) would be no smaller than some positive constant,
but (19) goes to 0 as T goes to infinity.) With a continuity
condition (see Appendix B.5), this further implies that as t
increases, ∇Dt(x)→ 0 and so Dt(x) approaches a constant
if p∗ has full support on Rk. That is, in the limit where
T → ∞ and η = ε = 1/

√
T , the discriminator DT (x) is

unable to distinguish the real data from the generated data,
and the algorithm converges.

4 ALGORITHMS

Starting from the CFG algorithm above, we empirically
explored algorithms using image generation as an example
task. This section describes variants of CFG that were found
to be efficient and effective and discusses their relation to the
original GAN.

Notation: The algorithms introduced below assume that
parametric model definitions (e.g., neural network architec-
tures) are given for use as a discriminator and others. We
write θD for the model parameters of D (or θG for G).

4.1 Empirical behavior of CFG on image generation
In this section, we first describe empirical issues of CFG when
applied to image generation. We then provide a theoretical
interpretation of the issues and a solution to them.

CFG (Algorithm 1) optimizes a discriminator to conver-
gence with a fixed generator in every iteration. This causes
two empirical issues when applied to image generation.
First, its computation is prohibitively expensive. Second, it is
apparently harmful to excessively update the discriminator
with a fixed generator; let us broadly call it overtraining. One
example of overtraining we observed is as follows. We start
with G0 that generates high-quality images as a result of
being trained elsewhere. As we keep updating discriminator
D with the generator fixed to G0, the discriminator starts
assigning larger and larger values to real data and smaller
values to generated data. But also it starts assigning large
values (even larger than to real data) to garbled images that
look like neither real data nor generated data. This pushes the
generator in their directions in generator update as ∇D(x)
points to them, and degrades the generator.

Our theory above assumes that essentially, any data
point in Rk has some possibility of being real as well as
some possibility of being generated, and that D(x)(≈ D(x))
indicates which is more likely. If it is reasonable to expect

6

that the pdf ratio D(x) = ln p∗(x)
p(x) ≈ 0 for the images that

look like neither real nor generated, then having a large D(x)
for such images means that the discriminator D deviates
a lot from the optimal discriminator D, i.e., ε in the ε-
approximation condition is large. Thus, according to our
theory, the degradation of the generator in the case above
results from large ε.

Fortunately, we found that early stopping prevents over-
training. These problematic images belong to the low-density
region where both p∗(x) and p(x) are small. From the
viewpoint of classification learning, this is D’s failure of
generalizing to unseen (and rarely occurring) data. If we
regard it as a peculiar form of overfitting, it makes sense
that early stopping, a common technique for preventing
overfitting, can counteract it. Early stopping also solves the
issue of expensive computation.

The harm of discriminator overtraining has been noted
also in the training of GANs. In the analysis of GAN
training by [1], which led to WGAN [2], it was shown that
essentially, the optimal (as well as near-optimal) discrimi-
nator d∗(x) ∈ [0, 1] is harmful2 if real data and generated
data are contained in respective low dimensional manifolds
(and so their distributions do not admit a density). With
this assumption, the optimal d∗ becomes a perfect classifier
that achieves d∗(x) = 1 on the support of the real data
distribution and d∗(x) = 0 on that of generated data. To
see the relation between [1] and our analysis, note that
as we use a logistic model d(x) = 1

1+exp(−D(x)) , we have:
d(x) = 1 iff D(x) = ∞, d(x) = 0 iff D(x) = −∞. This
means that the optimal and yet harmful discriminator d∗
of [1] is the kind of discriminator we also wish to avoid in
modeling data, as expressed in our assumption |D(x)| <∞
(implied by |D(x)| <∞ and D(x) ≈ D(x)). We found that
such an extreme discriminator can also be avoided by early
stopping.

Our assumptions do not hold if the supports of data
distributions are indeed contained in respective low-dim
manifolds. In that case, our approach should be viewed
as approximating such hard and spiky distributions without
a density by soft and smooth distributions with nonzero
densities, which are much easier to work with. A discriminator
can be encouraged to behave as assumed by, e.g., adding
a small Guassian noise to every observed data point [1].
Our empirical finding is, however, that noise addition is
not needed for our algorithms; stable training with good
performances can be achieved when we combine, as in the
algorithms presented below, early stopping of discriminator
training (like GANs) with functional gradient learning in
generator update (unlike GANs). The latter ensures improve-
ment of the generator, and we will later revisit this point.

4.2 ICFG: Incremental CFG

We therefore considered an incremental variant of CFG,
incremental CFG of GAN (ICFG), shown in Algorithm 2.
ICFG incrementally updates a discriminator little by little
interleaved with the generator updates, so that the generator
can keep providing new and more challenging examples to
prevent the discriminator from going into an undesirable

2. We write “d∗” for “D∗” of the perfect discrimination theorems in [1].

Algorithm 2 ICFG: Incremental CFG

Input: a set of training examples S∗, prior pz , initial genera-
tor G0, discriminator D. Meta-parameters: T , mini-batch
size b, discriminator update frequency U .

1: for t = 1, 2, . . . , T do
2: for U steps do
3: Sample x∗1, . . . , x

∗
b from S∗.

4: Sample z1, . . . , zb according to pz .
5: Update D by descending the stochastic gradient:

∇θD 1
b

∑b
i=1

[
ln(1+e−D(x∗i))+ln(1+eD(Gt−1(zi)))

]
6: end for
7: gt(x)← st(x)∇D(x) (e.g., st(x) = 1)
8: Gt(z)← Gt−1(z) + ηtgt(Gt−1(z)), for ηt > 0.
9: end for

10: return generator GT (and the updated D if so desired).

state. That is, similar to GANs, ICFG alternates between U
updates of the discriminator using U minibatches (where U
is a meta-parameter) and one update of the generator.

The switch to incremental update was for improving ε
(and efficiency); in that sense, our theory could still apply
here. However, very small U (e.g., U = 1, 5, 10) works
well as shown later. In this case, it is unlikely that ε (the
deviation of D from the optimum) is always small, especially,
at the beginning of training, and so an additional analysis is
required to explain the situation. Informally, imagine smooth
surrogate distributions, which are close to flat at the beginning
and gradually approach to the true distributions as more
and more data points are observed as training proceeds.
We conjecture that when such surrogate distributions are
considered in place of the true distributions, ε could be small,
and so improvement of the generator could be explained.

ICFG shares a nice property with CFG that there is no
need to design a complex generator model. The generator
model is automatically and implicitly derived from the
discriminator, and it dynamically grows as training proceeds.
Figure 1 illustrates a generator created by ICFG with T = 3
(i.e., 3 iterations). As is clear from the illustration, the
generator forms a residual net [12], where each building block
gt is automatically derived from the discriminator at time t.

A shortcoming of ICFG, however, is that the implicit
generator network can become very large. At time t, the size
of the generator network is in O(t), and therefore, the cost for
computing Gt(z) starting from scratch is in O(t). This means
that the computational cost for performing T iterations of
training could be inO(

∑T
t=1 t) = O(T 2). Therefore, on a task

that requires many iterations (i.e., a large T), training would
become quite expensive. We found that image generation
requires a relatively large T , e.g., T > 1000, and that T in this
order is problematic, causing slow training, a large model
that takes up a lot of space, and slow image generation.

4.3 xICFG: Approximate incremental CFG

As a solution to the issue of large generators, we propose
Approximate ICFG (xICFG, Algorithm 3). xICFG periodically
compresses the generator obtained by ICFG, by training an
approximator of a fixed size that approximates the behavior of
the generator obtained by ICFG. That is, given a definition

7

Algorithm 3 xICFG: Approximate ICFG

Input: a set of training examples S∗, prior pz , approximator
G̃ at its initial state, discriminator D.
Meta-parameters: (T, b, U) for ICFG, and N .

1: loop
2: G,D ← output of ICFG using S∗, pz, G̃,D as input.
3: if exit criteria are met then return generator G fi
4: Sample z1, z2, . . . , zN according to pz .
5: Update G̃ to minimize

∑N
i

1
2‖G̃(zi)−G(zi)‖2

6: end loop

of an approximator G̃ and its initial state, xICFG repeatedly
alternates the following.

• Using the approximator G̃ as the initial generator,
perform T iterations of ICFG to obtain generator G.

• Update the approximator G̃ to achieve G̃(z) ≈ G(z).

The generator size is again in O(T), but unlike ICFG,
which requires T to be large (e.g., T > 1000) for complex
tasks such as image generation, T for xICFG can be small
(e.g., T = 15), and so xICFG is efficient. Optionally, one can
perform input pooling for reducing computation, as was
done in our short paper [19], but in this work we focus on
xICFG without input pooling, which is simpler.

A small N (the number of data points used for approx-
imator update) and a small T would reduce the runtime
of one iteration of xICFG, but they would increase the
number of required iterations, as they reduce the amount
of the improvement achieved by one iteration of xICFG,
and so a trade-off should be found empirically. In particular,
as approximation tends to cause some degradation, it is
important to set T and N to sufficiently large values so
that the amount of the generator improvement exceeds the
amount of degradation caused by approximation. In our
experiments, however, tuning of meta-parameters turned out
to be relatively easy; essentially one set of meta-parameters
achieved stable training in all the tested settings across
datasets and network architectures, as shown later.

Our theory does not apply to xICFG as a whole, but it
applies to ICFG performed in each iteration of xICFG to the
extent discussed above. Compression of the generator (G
grown by ICFG) by approximating its behavior with a smaller
network (approximator G̃) is related to distillation [14].
xICFG’s performance partly depends on the representation
power of G̃, which can become a bottleneck, and we will
later report empirical results obtained by both high-capacity
G̃ and low-capacity G̃.

4.4 Relation to GAN
It is known that training of GANs can be hard due to

its instability. In this section, we show that GAN training
(Algorithm 4) can be regarded as a coarse approximation of
ICFG, and in particular, it is closely related to a special case
of xICFG that sets the meta-parameters to extreme values.
This viewpoint leads to some insight into GAN’s instability.

We start with the fact that GANs with the logistic
model (and so d(x) = 1

1+exp(−D(x))) and ICFG share the
discriminator update procedure as both minimize the lo-
gistic loss. This fact becomes more obvious when we plug

Algorithm 4 GAN training [10]

Input: S∗, pz , discriminator d, G. Meta-parameters b, U .
1: repeat
2: for U steps do
3: Sample x∗1, . . . , x

∗
b from S∗.

4: Sample z1, . . . , zb according to pz .
5: Update d by ascending the stochastic gradient:

∇θd 1
b

∑b
i=1 [ln d(x∗i) + ln(1− d(G(zi)))]

6: end for
7: Sample z1, . . . , zb according to pz .
8: Update G by descending the stochastic gradient:

∇θG 1
b

∑b
i=1 ln(1− d(G(zi)))

9: until exit criteria are met
10: return generator G

d(x) = 1
1+exp(−D(x)) into the GAN discriminator update

step, Line 5 of Algorithm 4.
Next, we show that the generator update of GAN is

equivalent to coarsely approximating a generator produced by
ICFG; in more detail, it is equivalent to taking one step
of gradient descent in order to approximate the generator
produced by ICFG with T = 1. To see this, first note that
GAN’s generator update (Line 8 of Algorithm 4) requires the
gradient ∇θG ln(1 − d(G(z))). Using d(x) = 1

1+exp(−D(x))

again, and writing [v]i for the i-th component of vector v,
the k-th component of this gradient can be written in terms
of D as:

[∇θG ln(1− d(G(z)))]k =
[
∇θG ln exp(−D(G(z)))

1+exp(−D(G(z)))

]
k

= −s0(G(z))
∑
j [∇D(G(z))]j

∂[G(z)]j
∂[θG]k

(20)

where s0(x) = 1
1+exp(−D(x)) , a scalar resulting from differ-

entiating f(y) = − ln exp(−y)
1+exp(−y) at y = D(x). Now suppose

that we apply ICFG with T = 1 to a generator G to obtain a
new generator G′:

G′(z) = G(z) + ηg(G(z)) = G(z) + ηs(G(z))∇D(G(z)) ,

and then we update G to approximate G′ so that

1

2
‖G′(z)−G(z)‖2

is minimized as in Line 5 of xICFG. To take one step
of gradient descent for this approximation, we need the
gradient of the square error above with respect to θG. It is
easy to verify that the k-th component of this gradient is:[
∇θG 1

2 ‖G
′(z)−G(z)‖2

]
k

= −
∑
j [G′(z)−G(z)]j

∂[G(z)]j
∂[θG]k

= −ηs(G(z))
∑
j [∇D(G(z))]j

∂[G(z)]j
∂[θG]k

By setting the scaling factor s(x) = s0(x)/η, this is exactly
the same as (20), required for GAN’s generator update.
(Recall that our theory and algorithms accommodate an
arbitrary data-dependent scaling factor s(x) > 0.)

Thus, algorithmically GAN is closely related to a special
case of xICFG that does the following:

• Let ICFG update the generator just once (i.e., T = 1).
• To update the approximator, take only one gradient

descent step with only one mini-batch (i.e., small N)

8

instead of optimizing to the convergence with many
examples. Therefore, the degree of approximation
could be poor.

The same argument applies also to the logd-trick variant
of GAN. The generator update with the logd trick requires
the same gradient as (20) except that s0 becomes s1(x) =

1
1+exp(D(x)) ; note that the change from s0(x) = 1

1+exp(−D(x))
is the sign in front of D. Thus, GAN with the logd trick is
also closely related to the special case of xICFG above.

To compare GANs with and without the logd trick,
consider the situation where generated data x is very far
from the real data and therefore D(x)� 0. In this situation,
we have s0(x) ≈ 0 without the logd trick, which would
make the gradient (for updating θG) vanish, as noted in [10],
even though the generator is poor and so requires updating.
In contrast, we have s1(x) ≈ 1 with the logd trick in this
poor generator situation, and when the generated data x
is close to the real data and therefore D(x) ≈ 0, we have
s1(x) ≈ 1

2 . Thus, with the logd trick, the scaling factor of the
gradient is likely to fall into [12 , 1), which is more sensible as
well as more similar to our choice (s(x) = 1) for the xICFG
experiments, compared with GANs without the trick.

xICFG vs. GANs: In spite of their connection, GANs are
unstable, and xICFG with appropriate meta-parameters is
stable (shown later). Thus, it is inferred that GAN’s instability
derives from what is unique to GANs, the two bullets above –
an extremely small T and coarse approximation. Either can cause
degradation of the generator, and when this happens, a GAN
generator could fail to keep providing challenging examples
to the discriminator, which would disrupt the balance of
the progress of the discriminator and that of the generator,
leading to instability.

ICFG vs. GANs: We have contrasted GANs and xICFG.
Now we compare generator update of GANs and that of
ICFG to consider the algorithmic merits of our functional
gradient approach. The short-term goal of generator update
can be regarded as the increase of the discriminator output
on generated data, i.e., to have D(Gt+1(z)) > D(Gt(z)) for
any z∼pz . ICFG updates the generator by Gt+1(z) = Gt(z)+
η∇D(Gt(z)), and so with small η, D(G(z)) is guaranteed to
increase for any z. This is because by definition ∇D(Gt(z))
is the direction that increases the discriminator output for z,
and it is precisely obtained on the fly for every z at the time of
generation.

By contrast, GAN training stochastically and approximately
updates θG using a small sample (one mini-batch SGD step
that backpropagates∇D), and so GAN’s update can be noisy,
which can lead to instability through generator degradation.
Noise in each mini-batch SGD step would not be an issue,
for example, in standard classifier training because the noise
could be collectively cancelled out after many steps are taken.
The GAN setting is different in that each generator update
is immediately followed by discriminator update where the
generator is used to produce input, which makes it prone to
cascading failure.

5 EXPERIMENTS

We tested xICFG on the image generation task.

5.1 Experimental setup
5.1.1 Baseline methods
For comparison, we tested the original GANs without
the logd trick (‘GAN0’) and with the logd trick (‘GAN1’),
motivated by their relation to xICFG as analyzed above.
As a representative of state-of-the-art methods, we tested
WGAN with the gradient penalty (WGANgp) [11]. WGANgp
has been shown to achieve stable training on a number of
network architectures and datasets and rival or outperform
a number of previous methods such as the original WGAN
with weight clipping, Least Squares GAN [24], Boundary
Equilibrium GAN [3], denoising feature matching [45], and
Fisher GAN [30]. We also experimented with three of the
more recent GAN training methods, which will be described
later with their results.

5.1.2 Evaluation metrics
Making reliable likelihood estimates with generative ad-
versarial models is known to be challenging [42], and we
instead evaluated the visual quality of generated images by
adopting the inception score [40] using datasets that come
with labels for classification. The intuition behind this score
is that high-quality images should lead to high confidence in
classification. It is defined as exp(ExKL(p(y|x)||p(y))) where
p(y|x) is the label distribution conditioned on generated data
x and p(y) is the label distribution over the generated data.
Following previous work (e.g., [46], [5]), the probabilities
were estimated by a classifier trained with the labels provided
with the datasets (instead of the ImageNet-trained inception
model used in [40]) so that the image classes of interest were
well represented in the classifier. We, however, call this score
the ‘inception score’, following custom. We note that the
inception score is limited, e.g., it would not detect mode
collapse or missing modes. Apart from that, we found that it
generally corresponds well to human perception.

In addition, we used Fréchet inception distance (FID) of
[13]. FID measures the distance between the distribution
of f(x∗) for real data x∗ and the distribution of f(x) for
generated data x, where function f is set to convert an
image to the internal representation of a classifier net-
work; to obtain function f we used the same classifiers
as used for the inception score evaluation. Let P1 and P2

be the two distributions of comparison, and let µ1, µ2 be
their means and let Σ1,Σ2 be their covariance matrices.
Then, the distance d(P1, P2) we measure is defined by
d2(P1, P2) = |µ1 − µ2|2 + tr(Σ1 + Σ2 − 2(Σ1Σ2)1/2). If
P1 and P2 are multivariate normal distributions (which
can be completely described by the mean and covariance),
then d(P1, P2) can be proved to be the Fréchet distance
[7]. One advantage of this metric is that it would be high
(poor) if mode collapse occurs, and a disadvantage is that its
computation is relatively expensive.

In the results below, we call these two metrics the
(inception) score and the (Fréchet) distance.

5.1.3 Data
We used MNIST, the Street View House Numbers dataset
(SVHN) [32], and the large-scale scene understanding (LSUN)
dataset3. These datasets are provided with class labels (digits

3. http://lsun.cs.princeton.edu/2015.html

9

‘0’ – ‘9’ for MNIST and SVHN and 10 scene types for
LSUN). A number of studies have used only one LSUN class
(‘bedroom’) for image generation. However, since a single-
class dataset would preclude evaluation using class labels
described above, we instead generated a balanced two-class
dataset using the same number of training images from the
‘bedroom’ class and the ‘living room’ class (LSUN BR+LR).
Similarly, we generated a balanced dataset from ‘tower’ and
‘bridge’ (LSUN T+B). The number of the images used as the
training examples was 60K (MNIST), 521K (SVHN, the ‘extra’
set minus 10K for validation), 2.6 million (LSUN BR+LR), and
1.4 million (LSUN T+B). The number of held-out examples
(used for the Fréchet distance evaluation) were 10K (MNIST
and SVHN), 32K (LSUN BR+LR), and 17K (LSUN T+B). The
LSUN images were shrunk and cropped into 64×64 as in
previous studies [37], [2]. The pixel values were scaled into
[−1, 1].

5.1.4 Network architectures
The tested methods require as input a network architecture
of a discriminator and that of an approximator or a genera-
tor. Among the numerous network architectures we could
experiment with, we focused on two types with two distinct
merits – good results and simplicity.

The first type (convolutional; stronger) aims at complexity
appropriate for the dataset so that good results can be
obtained. On MNIST and SVHN, we used an extension of
DCGAN [37], adding 1×1 convolution layers. The DCGAN
discriminator consists of convolution layers with stride 2
and batch normalization, and the generator is essentially the
reverse of the discriminator, using transposed convolution
layers with stride 2 and batch normalization. For LSUN,
whose images are larger (64×64) and whose number of train-
ing examples is also larger, we used a residual net (ResNet)
[12] of four residual blocks, which is a simplification from
the WGANgp code release, for both the discriminator and
the approximator/generator. Details are given in Appendix
C.2.1

These networks include batch normalization layers [18].
[11] states that WGANgp does not work well with a dis-
criminator with batch normalization. Although it would be
ideal to use exactly the same networks for all the methods,
it would be rather unfair for the other methods if we
always remove batch normalization. Therefore, we removed
batch normalization from D (as suggested by [11]) for
experimenting with WGANgp while we used the network
definitions as they are for the rest; also, we tested cases
without batch normalization anywhere for all the methods.

The second type (fully-connected G̃ or G; weaker) uses
a minimally simple approximator/generator, consisting of
two 512-dim fully-connected layers with ReLU, followed
by the output layer with tanh, which has a merit of sim-
plicity, requiring less design effort. We combined it with a
convolutional discriminator, the DCGAN extension above.

5.1.5 xICFG implementation details
To speed up training, we limited the number of epochs of
the approximator training in xICFG to 10 while reducing the
learning rate by multiplying by 0.1 whenever the training
loss stops going down. The scaling function s(x) in ICFG
(Line 7 of Algorithm 2) was set to s(x) = 1. To initialize

b mini-batch size 64
U discriminator update frequency 1
N # of examples used for updating G̃ 10b
T number of iterations in ICFG 25

TABLE 2: Meta-parameters for xICFG.

the approximator G̃ for xICFG, we first created a simple
generator Grand(z) consisting of a projection layer with
random weights set by the Gaussian distribution with
zero mean and standard deviation 0.01 to produce data
points of the desired dimensionality, and then trained G̃
to approximate the behavior of Grand. The training time
reported below includes the time spent for this initialization.
Unlike our short paper [19], no input pooling was performed.

5.1.6 Other details
In all cases, the prior pz was set to generate 100-dimensional
Gaussian vectors with zero mean and standard deviation 1.
All the experiments were done using a single NVIDIA Tesla
P100.

The meta-parameter values for xICFG were fixed to
those in Table 2 unless otherwise specified. For GANs, we
used the same mini-batch size as xICFG, and we set the
discriminator update frequency U to 1 as other values often
led to poorer results. The SGD update was done with rmsprop
[43] for xICFG and GANs. The learning rate for rmsprop
was fixed for xICFG for both the discriminator update and
the approximator training, but we tried several values for
GANs as it turned out to be critical. Similarly, for xICFG, we
found it important to set the step size η for the generator
update in ICFG to an appropriate value. The SGD update for
WGANgp was done with Adam [21] with meta-parameters
set to the values suggested by [11] except that we tried
several values for the learning rate. Thus, the amount of
tuning effort was about the same for all. Tuning was done
based on the performances on the validation set of 10K input
vectors (i.e., 10K 100-dim Gaussian vectors), and we report
the results on the test set of 10K input vectors, disjoint from
the validation set.

5.2 Results
5.2.1 On the quality of generated images
Inception score results: First, we report the inception
score results. The scores of the real data (in the held-out sets)
are 9.91 (MNIST), 9.13 (SVHN), 1.84 (LSUN BR+LR), and
1.90 (LSUN T+B), respectively, which roughly set the upper
bounds that can be achieved by generated images. Fig. 2 and
3 show the score of generated images (in relation to training
time) with the convolutional networks with and without
batch normalization, respectively. As discussed in Section 4.3
a smaller T has practical advantages of a smaller generator
resulting in faster generation and smaller footprints while a
larger T stabilizes xICFG training by ensuring that training
makes progress by overcoming the degradation caused by
approximation. With convolutional networks, we tested
T=15 in addition to T=25 (the value shown in Table 2
which worked well for all) and found that setting T=15 also
achieves stable training. The results in Fig. 2–3 were obtained
by setting T=15. xICFG generally performs well compared

10

50 100
Sc

or
e

Training time (K seconds)

SVHN,conv,no batch norm
xICFG
WGANgp
GAN1
GAN0

1.3

1.5

1.7

1.9

0 50 100 150

Sc
or

e

Training time (K seconds)

LSUN T+B,4-block ResNets
xICFG
WGANgp
GAN0
GAN1

10

10 15

Sc
or

e

Training time (K seconds)

MNIST,conv,no batch norm
xICFG
WGANgp

GAN0
GAN1 < 6

1.1

1.3

1.5

1.7

0 50 100 150

Sc
or

e

Training time (K seconds)

LSUN BR+LR 4-block ResNets

xICFG
WGANgp
GAN1
GAN08

9

10

0 5 10 15

Sc
or

e

Training time (K seconds)

MNIST, convolutional
xICFG
WGANgp
GAN1
GAN0

1.3

1.5

1.7

1.9

50 100 150

Sc
or

e

Training time (K seconds)

LSUN T+B, no batch norm
xICFG
WGANgp
GAN1GAN0 < 1.1

1.1
1.3
1.5
1.7

50 100 150

Sc
or

e

Training time (K seconds)

LSUN BR+LR, no batch norm
xICFG
WGANgp
GAN1
GAN0

7

8

9

0 50 100

Sc
or

e

Training time (K seconds)

SVHN, convolutional

xICFG

WGANgp

GAN1GAN0<5.25

Fig. 2: Image quality measured by the inception score in relation to training time. Convolutional networks. The legends are
roughly sorted from the best to the worst.

7

8

9

0 50 100

Sc
or

e

Training time (K seconds)

SVHN,conv,no batch norm
xICFG
WGANgp
GAN1
GAN0

1.3

1.5

1.7

1.9

50 100 150

Sc
or

e

Training time (K seconds)

LSUN T+B,4 block ResNets
xICFG
WGANgp
GAN0
GAN1

8

9

10

0 5 10 15

Sc
or

e

Training time (K seconds)

MNIST,conv,no batch norm
xICFG
WGANgp

GAN0
GAN1 < 6

1.1

1.3

1.5

1.7

50 100 150

Sc
or

e

Training time (K seconds)

LSUN BR+LR 4 block ResNets

xICFG
WGANgp
GAN1
GAN0

10

10 15

Sc
or

e

Training time (K seconds)

MNIST, convolutional
xICFG
WGANgp
GAN1
GAN0

1.3

1.5

1.7

1.9

0 50 100 150

Sc
or

e

Training time (K seconds)

LSUN T+B, no batch norm
xICFG
WGANgp
GAN1GAN0 < 1.1

1.1
1.3
1.5
1.7

0 50 100 150

Sc
or

e

Training time (K seconds)

LSUN BR+LR, no batch norm
xICFG
WGANgp
GAN1
GAN0

50 100

Sc
or

e

Training time (K seconds)

SVHN, convolutional

xICFG

WGANgp

GAN1GAN0<5.25

Fig. 3: Image quality measured by the inception score in relation to training time. Convolutional networks without batch
normalization anywhere. The legends are roughly sorted from the best to the worst.

8

9

10

0 15 30

Sc
or

e

Training time (K seconds)

MNIST, fully-connected

xICFG
WGANgpRest < 6 6

7
8

0 25 50

Sc
or

e

Training time (K seconds)

SVHN, fully-connected
xICFG
WGANgpRest < 6

1.4

1.6

1.8

0 50 100

Sc
or

e

Training time (K seconds)

LSUN T+B,fully-connected
xICFG
WGANgp

GAN0 < 1.11.1
1.3
1.5

0 50 100
Sc

or
e

Training time (K seconds)

LSUN BR+LR,fully-connected
xICFG
WGANgp
GAN1

GAN0 < 1.1

Fig. 4: Image quality measured by the inception score in relation to training time. Fully-connected approximators/generators.

GAN1

GAN0

WGANgp

xICFG
2

4

6

8

10

12

50 100 150

D
is

ta
nc

e

Training time (K seconds)

LSUN BR+LR

2

4

6

8

10

12

1.1 1.3 1.5 1.7

D
is

ta
nc

e

Score

LSUN BR+LR

GAN1

GAN0

WGANgp

xICFG
2

4

6

8

10

12

1.3 1.4 1.5 1.6 1.7 1.8

D
is

ta
nc

e

Score

LSUN T+B

2

4

6

8

10

12

50 100 150

D
is

ta
nc

e

Training time (K seconds)

LSUN T+B

Fig. 5: Fréchet distance in relation to training time (left) and the inception score (right) on the runs in Fig 2. The arrows in the right
graphs show the direction of time flow. On both LSUN BR+LR (up) and T+B (down), GAN0 and GAN1 suffer from mode collapse
or lack of diversity; their inception score fluctuates (Fig 2) and their Fréchet distance stays relatively high. xICFG (and WGANgp)
shows no sign of mode collapse (Fig 13–14) and performs well in both metrics.

(a) Real images. (b) “Realistic” images (xICFG) (c) “Creative” images (xICFG)

Fig. 6: “Realistic” and “creative” images generated by xICFG. (a) Real Golden Gate Bridge images in the training set. (b)
Images generated by xICFG that look like Golden Gate Bridge though not perfect. (c) Images generated by xICFG that look like
modifications of Golden Gate Bridge.

11

2

4

6

8

10

12

1.1 1.2 1.3 1.4 1.5 1.6

D
is

ta
nc

e

Score

(poor T, poor approx) ≈ GAN

(good T, poor approx)

(poor T, good approx)

(good T, good approx)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

50 100 150

S
co

re

Training time (K seconds)

2

4

6

8

10

12

50 100 150

D
is

ta
nc

e

Training time (K seconds)

(a) Inception score vs. time (b) Fréchet distance vs. time (c) Inception score vs. Fréchet distance

The arrows in (c) indicate the
direction of time flow.

Fig. 7: xICFG. LSUN BR+LR. 4-block ResNets. The setting almost equivalent to GANs performs poorly, similar to GANs. The
performance improves as we improve the setting of T and the approximator update.

with others. WGANgp also achieves stable training, but
its score generally falls a little short of xICFG. On LSUN
datasets, GAN1 occasionally exceeds xICFG, but inspection
of generated images reveals that it suffers from severe mode
collapse. The inception score results with the simple but
weak fully-connected approximator/generator are shown in
Fig. 4. xICFG achieved stable training. Among the baseline
methods, only WGANgp succeeded in this setting, but its
score fell behind xICFG. These results show that xICFG is
effective and efficient.

Fréchet distance results: Table 3 shows the Fréchet dis-
tance results evaluated at the end of training runs shown
in Fig. 2 and 4. xICFG generally performs well, followed
by WGANgp except that with convolutional networks on
MNIST and SVHN, WGANgp and xICFG produce similar
values. We found that the Fréchet distance mostly correlates
with the inception score, i.e., generally, when the score
is good (large), the distance is also good (small). One
prominent exception is when mode collapse occurs, and
Fig. 5 shows examples of this on the LSUN datasets. That is,
GAN0 and GAN1 both suffer from mode collapse or lack of
diversity on these datasets (Fig. 5 right); while their inception
score fluctuates, the Fréchet distance stays large, correctly
indicating that the distribution of generated data differs from
that of real data. By contrast, xICFG and WGANgp show no
sign of severe mode collapse as shown later in Fig. 13–14,
and their Fréchet distance improves (goes down) as their
inception score improves (goes up), outperforming GAN0
and GAN1 in both metrics (Fig. 5).

Visual inspection of generated images: Examples of
generated images are shown in Fig. 11–15. The MNIST and
SVHN images in Fig. 11–12 were randomly chosen and sorted
by the predicted classes. To use limited space effectively, we
take a more focused approach for larger LSUN images and
show the ‘best’ and ‘worst’ images, in terms of the confidence
of a classifier. That is, in Fig. 13–15 we show images that were
assigned (by the classifier used for evaluation) the highest
probability of being, e.g., a “bedroom” or a “living room” on
LSUN BR+LR and also show the images with the highest
entropy values. They are the best and the worst contributors
to the inception score, respectively, as well.

Note that small samples may not represent the population
well due to variability. Even so, it is clear that the images
in Fig. 11f, 12c, 12f, 13d, 14d, 15c, and 15f suffer from low

MNIST SVHN BR+LR T+B
xICFG 3.35 5.29 2.42 2.92

Convolutional WGANgp 3.41 5.34 3.31 3.90
(Fig. 2) GAN0 4.55 10.60 10.21 6.50

GAN1 4.56 5.82 10.31 10.77
xICFG 3.39 5.93 4.65 5.23

Fully-conn. WGANgp 4.67 6.21 5.80 6.55
(Fig. 4) GAN0 58.59 18.25 14.86 32.49

GAN1 38.77 22.40 11.27 12.84

TABLE 3: Fréchet distance results. Evaluated at the maxi-
mum training time of the respective graphs.

quality and/or mode collapse or lack of diversity. These
images were generated by either GAN0 or GAN1.

xICFG and the best-performing baseline (WGANgp)
consistently produce visibly better images than the original
GANs in all the settings. Overall, we feel that visual impres-
sions of the images generated by xICFG are sometimes better
than and at least as good as those of WGANgp, which is one
of the state-of-the-art methods. More image examples are
shown in Appendix C.1.

No memorization: When generated images look some-
what realistic, one may wonder if the generator is mem-
orizing training images instead of capturing the essence
of images. In Fig. 6, we show examples that indicate that
xICFG does something more ‘creative’ than memorization.
The LSUN T+B includes a number of pictures of Golden
Gate Bridge. As seen in Fig. 6a, in reality, Golden Gate
Bridge’s tower component (the reddish vertical object) has
four grids above the horizontal part. xICFG generates images
that look like Golden Gate Bridge (Fig. 6b) though they are
not perfect (the towers look good, but the wires are wobbly
and the ocean is missing from some). It also generates images
that look like modifications of Golden Gate Bridge (Fig. 6c),
making the tower component longer with more grids, placing
it with objects that are not there in reality, and so forth.

5.2.2 Transition from GAN to ‘good’ xICFG
We have shown in Section 4.4 that the original GAN is closely
related to the special (and extreme) case of xICFG that sets
T to the minimum (T=1) and makes the minimal effort for
updating the approximator, going over only one mini-batch
just once. We also presented an insight that since xICFG with
appropriate meta-parameters is stable, GAN’s instability
could be due to these differences – extremely small T and
poor approximation.

12

To follow up on this, we experimented with xICFG with
meta-parameter settings that transition from the poor setting
corresponding to GAN towards the good setting used above.
The results using the convolutional networks (used in Fig.
2) on LSUN BR+LR are shown in Fig. 7. The legends in this
figure represent the following:

• “poor T”: T=1
• “good T”: T=15
• “poor approx”: Poor approximation iterating only

once over only one mini batch (N = b) for updating
the approximator.

• “good approx”: Good approximation iterating 10
times over 10 mini batches (N = 10b) for updating
the approximator, as was done in Fig. 2–5.

As predicted, “(poor T , poor approx)≈ GAN” performs
just like GANs – the inception score fluctuates a lot and the
Fréchet distance stays large; manual inspection of images
indicates severe mode collapse. When we improve either
the value of T (“(good T , poor approx)”) or approximation
(“(poor T , good approx)”), training becomes more stable
and the performance in both metrics improves as training
proceeds; however, the performance improvement stops
without catching up with “(good T , good approx)”. That
is, in order to obtain the best results, we need to have both
right – sufficiently large T and good approximation. The
results are consistent with our theoretical insight into GANs
presented earlier and support our CFG approach.

5.2.3 On the discriminator output values

7.5
8

8.5
9

0.05 0.5

Sc
or

e

|D(real)-D(gen)| (log-scale)

SVHN

(a) SVHN

1.4
1.6
1.8

2

0.5 5

Sc
or

e

|D(real)-D(gen)| (log-scale)

LSUN T+B

(b) LSUN T+B

0.05

0.5

5

0 10 20 30 40

|D
(r

ea
l)

-
D

(g
en

)|

Training time (K seconds)

9

10

0.05 0.5 5

S
co

re

|D(real)-D(gen)|

①
② ③

④

①

④
③

②

(c) Eventual collapse of training on MNIST.
Fig. 8: Relations between image quality and |D(real)−D(gen)|
(=∆D). The arrows indicate the direction of time flow. A
correlation is observed both when training is succeeding (blue
solid arrows) and failing (red dotted arrows).

Successful training should make it harder and harder for
the discriminator to distinguish real images and generated
images, which would manifest as the discriminator output
values for real images and generated images becoming
closer and closer. We quantify this notion by the difference
between discriminator output values for real images and
generated images averaged over time intervals of a fixed
length, obtained as a by-product of the forward propagation
for updating the discriminator. We call it ‘|D(real)−D(gen)|’
or ∆D in short.

Fig. 8 shows that, as expected, ∆D generally correlates
with the progress of training. When training is going well
(indicated by blue solid arrows), ∆D decreases and the

inception score improves as training proceeds. When it is
failing, ∆D goes up rapidly and the inception score degrades
rapidly; see the change from the state #3 to #4 in Fig 8c. Here,
due to excessive training, the discriminator is overfitting
little by little to relatively small MNIST training data (#2 to
#3), increasing ε of the ε-approximation. (Note that this is
overfitting in the standard sense as it was confirmed that the
average of D(x) on the real data in the held-out set became
smaller and smaller than that of the training set.) That slows
down and eventually stops the progress of the generator,
resulting in the rapid increase of ∆D and rapid degradation
of the generator (#3 to #4). In practice, training should be
stopped before the rapid growth of ∆D – early stopping. Thus,
the decrease/increase of ∆D values, which can be obtained
at almost no cost during training, can be used as an indicator
of the status of xICFG training.

Additionally, it might be worth mentioning that the ∆D

value is related to the sum of the KL divergence and the
reverse KL divergence between the two distributions, which
were shown to be optimized by the CFG algorithm (Section
2). Details are given in Appendix C.2.3.

5.2.4 On the values of U and N
We have shown that T can be reduced for practical advan-
tages in some cases, and here we consider the effects of
changing U (discriminator update frequency) and N (the
number of examples used for updating the approximator)
from their default values, U=1 and N=10b where b is the
mini-batch size.

Essentially, a larger U may make the discriminator closer
to the optimum, but a very large U would increase the
risk of discriminator overtraining. A larger N would make
better approximation, but it may slow down training. If
one takes the viewpoint that a discriminator should capture
the essence of real data, and it should become better and
better in doing so each time it is updated, then one can
argue that a larger (but not too large) U would increase the
amount of discriminator improvement per each call of ICFG,
and therefore, also increase the amount of xICFG generator
improvement per xICFG iteration. This viewpoint suggests
that to benefit from a larger U , we should also consider
increasing N so that the approximator G̃ can keep up with
the generator instead of becoming a bottleneck.

8

9

10

0 10 20 30

Sc
or

e

Training time (K sec)

MNIST, conv

2.5
3

3.5
4

0 10 20 30

D
is

ta
nc

e

Training time (K sec)

MNIST, conv
xICFG (U=1, N=10b)

xICFG (U=10,N=100b)

Fig. 9: Larger values for U and N on MNIST. Convolutional.

We tested U=5 and U=10 with convolutional networks
used in Fig. 2 and found that stable training can be achieved
also with these values while in some cases N also needed to
be increased as expected. On MNIST the increase of U (and
N) improved the Fréchet distance while producing similar
inception scores (Fig. 9). On the other datasets, a larger U
and/or N either exhibited similar performances (SVHN) or
slowed down training (LSUN), and it was not clear whether
doing so was advantageous.

We note that MNIST differs from the other tested datasets
in that training data is much smaller (2–10% of the others)

13

and that the images are simpler (grayscale digits). These
differences make MNIST somewhat uniquely prone to
discriminator overfitting; indeed, if trained excessively long
with the default meta-parameters, ∆D starts going up (Fig
8c). On MNIST, a larger U and N makes training more stable
(no increase of ∆D after 30K seconds) and improves the
Fréchet distance.

Thus, our finding is that the default values are a good
starting point, and it depends on the datasets and possibly
network architectures whether more careful meta-parameter
tuning pays off.

5.2.5 Comparison with recent GAN variants
Finally, we compare xICFG with more recent GAN training
methods that appeared around the first publication of this
work: spectral normalization (hereafter GAN-sn) [29] and
zero-centered gradient penalty regularization (GAN-gp)
[26]. These methods stabilize GAN training by normaliza-
tion/regularization of the discriminator. GAN-sn constrains
the weight matrix of each layer to have the unit 2-norm.
GAN-gp penalizes larger gradients by a regularization
term γEx∼q‖∇D(x)‖2 where q is the distribution of either
real data or generated data (corresponding to R1- or R2-
regularizer of [26]), and we tested both. Following the tuning
protocol above, we made substantial efforts to obtain their
best performances; details are given in Appendix C.2.4.

In this series of experiments, we performed 3 runs per
method using 3 different random seeds in order to account
for the variability caused by random factors such as weight
initialization. For comparison, we also performed 3 runs of
WGANgp and the original GANs.

Fig. 10 shows the scores (x-axis) and the Fréchet distances
(y-axis) on (a) the convolutional networks and (b) the fully-
connected approximators/generators, used in Fig. 2 and 4,
respectively. Each method has three points in each graph,
except that the original GAN results are shown only when
they are as good as the rest and so they can fit in the same
graph. Since higher scores and smaller distances are better,
the points closer to the bottom right of each graph are
better. The baseline methods are organized into two groups:
‘Original GANs’ (GAN0 and GAN1) and ‘Improved GANs’
(GAN-sn, GAN-gp of two types, and WGANgp);

Improved GANs indeed show clear and consistent im-
provements over the original GANs. In many cases, the
performances of the original GANs are poor to the extent
that they are out of range of the graphs. xICFG performs
consistently well, irrespective of the random seeds, and it
generally exceeds or rivals the improved GANs. It should
also be noted again, however, that the generator model of
xICFG is larger than the baseline methods; thus, footprints
are larger and generation is slower, which may need consid-
eration in practical applications.

6 RELATED WORK

Analyzing and improving GANs: Improvements of
GANs are often based on analyses of GAN training. As
a result, they typically stay within the minimax optimization
framework of the original GAN. In contrast, our framework
is that of greedy learning of functional compositions, which
puts our work in a relatively unique position. There are a

Original GANs

Improved GANs

xICFG

5

6

7

7 8 9

D
is

ta
nc

e

Score

SVHN conv.

2

3

4

1.5 1.6 1.7

D
is

ta
nc

e

Score

LSUN BR+LR

2

3

4

1.7 1.8 1.9

D
is

ta
nc

e

Score

LSUN T+B conv.

3

4

5

9 9.5 10

D
is

ta
nc

e

Score

MNIST conv.

Original GANs
are mostly out of
range.

(a) Using convolutional networks as in Fig.2.

Original GANs
are all out of
range.

Improved GANs

xICFG

3
4
5
6

9 9.5 10

D
is

ta
nc

e

Score

MNIST f.c.

5
6
7
8

7 8 9

D
is

ta
nc

e

Score

SVHN f.c.

4

5

6

7

1.3 1.4 1.5
D

is
ta

nc
e

Score

LSUN BR+LR

5

6

7

8

1.5 1.6 1.7 1.8

D
is

ta
nc

e

Score

LSUN T+B f.c.

(b) Using fully-connected approximators/generators as in Fig.4.

Fig. 10: Scores (x-axis) and distances (y-axis). 3 runs (with
3 random seeds) per method. ‘Original GANs’: GAN0 and
GAN1. ‘Improved GANs’: GAN-sn, GAN-gp of two types, and
WGANgp.

large number of studies related to GANs, and here we focus
on a small number of those perceived as most related.

One approach to improving GANs involves change of the
training objective, e.g., WGAN [2], [1], Least squares GAN
[24], and f -GAN [34]. We have discussed f -GAN in Section
2.2.1 and the low-dim manifold view of [1] in Section 4.1.
[11] regularizes the discriminator of WGAN with the gradient
penalty term (WGANgp), adopted by many studies, and we
compared it with xICFG in our experiments.

Another type of approach involves regularization or
normalization of GANs. Spectral normalization constrains
the weight matrix of each layer to have the unit 2-norm,
proposed by [29] and adopted for class-conditional GANs
[4], [47]. Regularization of the discriminator by penalizing
large ‖∇D(x)‖ was proposed in [38], [26]. Jacobian clamping
[35] keeps the singular values of the input-output Jacobian
of the generator in a pre-defined range. [31] regularizes
the generator by penalizing large gradients with respect to
model parameters of the discriminator. [27] penalizes large
gradients with respect to model parameters both on the
generator and the discriminator. We reported performance
comparison with spectral normalization [29] and the gradient
penalty regularization methods of [26].

While the theoretical motivations of these methods vary
(e.g., approximating the effect of adding noise [38], [26], a
local stability analysis near an equilibrium point [31], [26], a
Jacobian analysis of the gradient vector field [27]), it appears
that generally, these methods stabilize GAN training by
preventing sudden large changes which could immediately
push the minimax game into a vicious cycle. [4] and [27] have

14

(a) xICFG (b) Best baseline (c) Worst baseline (d) xICFG (e) Best baseline (f) Worst baseline
Fig. 11: MNIST. Random samples sorted by the predicted classes. (a-c) Convolutional networks. (d-f) Fully-connected G̃ or G.

(a) xICFG (b) Best baseline (c) Worst baseline (d) xICFG (e) Best baseline (f) Worst baseline
Fig. 12: SVHN. Random samples sorted by the predicted classes. (a-c) Convolutional networks. (d-f) Fully-connected G̃ or G.

(a) Real images (b) xICFG (c) Best baseline (d) Second best baseline
Fig. 13: LSUN BR+LR (64×64). 4-block ResNets. These images are most likely bedrooms (1st row), most uncertain (2nd row), most
likely living rooms (3rd row), among a random sample of 1000, according to a classifier.

(a) Real images (b) xICFG (c) Best baseline (d) Second best baseline
Fig. 14: LSUN T+B (64×64). 4-block ResNets. These images are most likely towers (1st row), most uncertain (2nd row), most likely
bridges (3rd row), among a random sample of 1000, according to a classifier.

(a) xICFG (BR+LR) (b) Best baseline (c) 2nd best baseline (d) xICFG (T+B) (e) Best baseline (f) 2nd best baseline
Fig. 15: Weak G̃/G (fully-connected) on LSUN BR+LR (a-c) and T+B (d-f). 64×64. The images were chosen as in Fig. 13 and 14.

15

noted cases where regularization stabilizes GAN training but
leads to a poor solution. Our xICFG is free of this potential
problem since it does not involve regularization. On the
other hand, many of these regularization/normalization tech-
niques (in particular, those which work on the discriminator)
can be easily integrated into xICFG, and doing so may be
useful in some situations.

Unrolled GANs [28] optimize the generator with respect
to an unrolled optimization of the discriminator in order to
make generator update closer to the state of using the optimal
discriminator without actually updating the discriminator.
There is a high-level similarity between unrolled GANs and
xICFG as both involve multiple states of the discriminator.

[20] generated high-resolution images by incrementally
adding layers for higher resolutions, using WGANgp as a
base learner. We view xICFG as a component that, similar to
WGANgp, can be used to build higher levels of architecture
such as that of [20] and stacked GANs [15], [48].

[22] described a cascading process related to CFG, moti-
vated by Langevin dynamics sampling, called introspective
neural networks. Based on the theory of Langevin, their
generation process requires repeated noise addition, and
so our generation is simpler.

Functional gradient learning: Our approach can be re-
garded as functional gradient learning. Similar to gradient
boosting, where more and more decision trees are added to
the model as training proceeds, ICFG adds more and more
components (layers if the discriminator is a neural network)
to the generator, following the gradients in a function space.

Natural gradient descent [17], [16] has been applied to
neural networks for deep learning, e.g., [41], [25], [36], [39].
It can be regarded as moving in a function space so that the
change in the objective is maximized per a fixed amount of
move in the function space, where moves are measured by
the KL divergence. However, the function space explored by
natural gradient descent corresponds to the one obtained by
changing parameters of a fixed neural network structure. By
contrast, CFG and its variants dynamically grows a generator,
as illustrated in Fig.1.

In parallel to our work, [33] proposed gradient layers
for fine-tuning WGAN, which is similar to our ICFG. As
noted above, ICFG suffers from the issue of large generators
if used for image generation from scratch, and so does
insertion of gradient layers. This issue was the motivation
for xICFG, which periodically compresses the generator by
approximation.

7 CONCLUSION

In the generative adversarial learning setting, we considered
a generator that can be obtained using composite functional
gradient learning. Our theoretical results led to the new
stable algorithm xICFG. The experimental results showed
that xICFG generated equally good or better images than
GAN and WGAN variants in a stable manner.

REFERENCES

[1] Martin Arjovsky and Léon Bottou. Towards principled methods
for training generative adversarial networks. In Proceedings of
International Conference on Learning Representations (ICLR), 2017.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein
generative adversarial networks. In Proceedings of International
Conference on Machine Learning (ICML), 2017.

[3] David Berthelot, Thomas Schumm, and Luke Metz. BE-
GAN: Boundary equilibrium generative adversarial networks.
arXiv:1703.10717, 2017.

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan
training for high fidelity natural image synthesis. In Proceedings of
International Conference on Learning Representations (ICLR), 2019.

[5] Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and
Wenjie Li. Mode regularized generative adversarial networks.
In Proceedings of International Conference on Learning Representations
(ICLR), 2017.

[6] Imre Csiszár and Paul C. Shields. Information theory and statistics:
a tutorial. Communications and Information Theory, 1(4):417–528,
2004.

[7] D. C. Dowson and B. V. Landau. The fréchet distance between
multivariate normal distributions. Journal of Multivariate Analysis,
12:450–455, 1982.

[8] Jerome H. Friedman. Greedy function approximation: a gradient
boosting machine. Ann. Statist., 29(5):1189–1232, 2001.

[9] Xavier Glorot and Yoshua Bengio. Understanding the difficulty
of training deep feedforward neural networks. In Proceedings
of International Conference on Artificial Intelligence and Statistics
(AISTATS), 2010.

[10] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems 27 (NIPS 2014), 2014.

[11] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Du-
moulin, and Aaron Courville. Improved training of Wasserstein
GANs. In Advances in Neural Information Processing Systems 30 (NIPS
2017), 2017.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. arXiv:1512.03385, 2015.

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, and Bern-
hard Nessler. GANs trained by a two time-scale update rule
converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems 30 (NIPS 2017), 2017.

[14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. In Proceedings of Deep Learning and
Representation Learning Workshop: NIPS 2014, 2014.

[15] Xun Huang, Yixuan Li, Omid Poursaeed, John Hopcroft, and Serge
Belongie. Stacked generative adversarial networks. In Proceedings
of Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[16] Shun ichi Amari. Neural learning in structured parameter spaces
– natural Riemannian gradient. In Advances in Neural Information
Processing Systems 9 (NIPS 1996), 1996.

[17] Shun ichi Amari. Natural gradient works efficiently in learning.
Neural Computation, 10(2):251–276, 1998.

[18] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift. In
Proceedings of International Conference on Machine Learning (ICML),
2015.

[19] Rie Johnson and Tong Zhang. Composite functional gradient learn-
ing of generative adersarial models. In Proceedings of International
Conference on Machine Learning (ICML), 2018.

[20] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of GANs for improved quality, stability, and
variation. In Proceedings of International Conference on Learning
Representations (ICLR), 2018.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Proceedings of International Conference on Learning
Representations (ICLR), 2015.

[22] Justin Lazarow, Long Jin, and Zhuowen Tu. Introspective neural
networks for generative modeling. In Proceedings of International
Conference on Computer Vision (ICCV), 2017.

[23] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and
Barnabás Póczos. MMD GAN: Towards deeper understanding
of moment matching network. In Advances in Neural Information
Processing Systems 30 (NIPS 2017), 2017.

[24] Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang,
and Stephen Paul Smolley. Least squares generative adversarial
networks. arXiv:1611.04076, 2017.

16

[25] James Martens and Roger Grosse. Optimizing neural networks
with kronecker-factored approximate curvature. In Proceedings of
International Conference on Machine Learning (ICML), 2015.

[26] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which
training methods for gans do actually converge? In Proceedings of
International Conference on Machine Learning (ICML), 2018.

[27] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The
numerics of GANs. In Advances in Neural Information Processing
Systems 30 (NIPS 2017), 2017.

[28] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein.
Unrolled generative adversarial networks. In Proceedings of Interna-
tional Conference on Learning Representations (ICLR), 2017.

[29] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi
Yoshida. Spectral normalization for generative adversarial net-
works. In Proceedings of International Conference on Learning
Representations (ICLR), 2018.

[30] Youssef Mroueh and Tom Sercu. Fisher GAN. In Advances in Neural
Information Processing Systems 30 (NIPS 2017), 2017.

[31] Vaishnavh Nagarajan and J. Zico Kolter. Gradient descent gan
optimization is locally stable. In Advances in Neural Information
Processing Systems 30 (NIPS 2017), 2017.

[32] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,
Bo Wu, and Andrew Y. Ng. Reading digits in natural images with
unsupervised feature learning. In Proceedings of NIPS Workshop on
Deep Learning and Unsupervised Feature Learning, 2011.

[33] Atsushi Nitanda and Taiji Suzuki. Gradient layer: Enhancing the
convergence of adversarial training for generative models. In
Proceedings of International Conference on Artificial Intelligence and
Statistics (AISTATS), 2018.

[34] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f -gan:
Training generative neural samplers using variational divergence
minimization. In Advances in Neural Information Processing Systems
29 (NIPS 2016), 2016.

[35] Augustus Odena, Jacob Buckman, Catherine Olsson, Tom B. Brown,
Christopher Olah, Colin Raffel, and Ian Goodfellow. Is generator
conditioning causally related to gan performance? In Proceedings of
International Conference on Machine Learning (ICML), 2018.

[36] Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for
deep networks. In Proceedings of International Conference on Learning
Representations (ICLR), 2014.

[37] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised
representation learning with deep convolutional generative adver-
sarial networks. arXiv:1511.06434, 2015.

[38] Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas
Hofmann. Stabilizing training of generative adversarial networks
through regularization. In Advances in Neural Information Processing
Systems 30 (NIPS 2017), 2017.

[39] Nicolas L. Roux, Pierre antoine Manzagol, and Yoshua Bengio.
Topmoumoute online natural gradient algorithm. In Advances in
Neural Information Processing Systems 20 (NIPS 2007), 2007.

[40] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung,
Alec Radford, and Xi Chen. Improved techniques for training
GANs. In Advances in Neural Information Processing Systems 29
(NIPS 2016), 2016.

[41] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan,
and Pieter Abbeel. Trust region policy optimization. In Proceedings
of International Conference on Machine Learning (ICML), 2015.

[42] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on
the evaluation of generative models. In Proceedings of International
Conference on Learning Representations (ICLR), 2016.

[43] Tijman Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent magnitude.
COURSERA: Neural Networks for Machine Learning, 4, 2012.

[44] Ilya Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-
Gabriel, and Bernhard Schölkopf. AdaGAN: Boosting generative
models. In Advances in Neural Information Processing Systems 30
(NIPS 2017), 2017.

[45] David Warde-Farley and Yoshua Bengio. Improving generative ad-
versarial networks with denoising feature matching. In Proceedings
of International Conference on Learning Representations (ICLR), 2017.

[46] Jianwei Yang, Anitha Kannan, Dhruv Batra, and Devi Parikh. LR-
GAN: Layered recursive generative adversarial networks for image
generation. In Proceedings of International Conference on Learning
Representations (ICLR), 2017.

[47] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-
tus Odena. Self-attention generative adversarial networks.
arXiv:1805.08318, 2018.

[48] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang
Wang, Xiaolei Huang, and Dimitris Metaxas. StackGAN: Text to
photo-realistic image synthesis with stacked generative adversarial
networks. In Proceedings of International Conference on Computer
Vision (ICCV), 2017.

[49] Tong Zhang. Statistical behavior and consistency of classification
methods based on convex risk minimization. The Annals of Statistics,
32(1):56–85, 2004.

Rie Johnson Rie Johnson received the Ph.D. de-
gree in computer science from Cornell University,
Ithaca, NY, USA, in 2001. She was a research
scientist with the IBM T.J. Watson Research
Center, Yorktown Heights, NY, USA, until 2007.
Her current research interests include machine
learning and its applications.

Tong Zhang Tong Zhang is a professor of Com-
puter Science and Mathematics at the Hong
Kong University of Science and Technology. His
research interests are machine learning, big
data and their applications. He obtained a BA in
Mathematics and Computer Science from Cornell
University, and a PhD in Computer Science from
Stanford University. Before joining HKUST, Tong
Zhang was a professor at Rutgers University, and
worked previously at IBM, Yahoo as research
scientists, Baidu as the director of Big Data Lab,

and Tencent as the director of AI Lab. Tong Zhang was an ASA fellow and
IMS fellow, and has served as the chair or area-chair in major machine
learning conferences such as NIPS, ICML, and COLT, and has served as
associate editors in top machine learning journals such as PAMI, JMLR,
and Machine Learning Journal.

APPENDIX A
SUPPLEMENTS TO SECTION 2 (CONTINUOUS THEORY)
Proof of Theorem 2.1 (continuous CFG)
We use ‖ · ‖ to denote the vector 2-norm and the matrix spectral norm (the largest singular value of a matrix). Given a
differentiable scalar function h(x) : Rk → R, we use ∇h(x) to denote its gradient, which becomes a k-dimensional vector
function. Given a differentiable function g(x) : Rk → Rk, we use ∇g(x) to denote its Jacobi matrix and we use ∇ · g(x) to
denote the divergence of g(x), defined as

∇ · g(x) :=
k∑
j=1

∂[g(x)]j
∂[x]j

,

where we use [x]j to denote the j-th component of x. We know that∫
∇ · w(x)dx = 0 (21)

for all vector function w(x) such that w(∞) = 0.
To prove Theorem 2.1, we also need the following lemma, which specifies the dynamics of pt.

Lemma A.1. Using the definitions and notation in Theorem 2.1, we have

dpt(x)

dt
= −∇pt(x) · gt(x)− pt(x)∇ · gt(x) (22)

for all data x ∈ Rk.

Proof
To simplify notation, let random variable X = Gt(Z) ∈ Rk, and let p be the probability density of X . Let X ′ = Gt+δ(Z)

for a small δ so that X ′ is a random variable transformed from X by X ′ = X + δg(X) + o(δ) and let p′ be the probability
density of X ′. For an arbitrary x′ ∈ Rk, let x′ = x+ δg(x) + o(δ) . Then we have

p′(x′) =p(x)
∣∣ det(dx′/dx)

∣∣−1
=p(x)

∣∣ det(I + δdg(x)/dx+ o(δ))
∣∣−1

=p(x)(1 + δ∇ · g(x) + o(δ))−1

=p(x)(1− δ∇ · g(x) + o(δ)) (23)
=p(x)− δp(x′)∇ · g(x′) + o(δ) (24)
=p(x′)− δg(x′) · ∇p(x′)− δp(x′)∇ · g(x′) + o(δ). (25)

The first three equalities used the multivariate change of variables formula for probability densities for the change from
X to X ′ and the definition of determinant with terms explicitly expanded up to O(δ). (23) used the Taylor expansion of
(1 + z)−1 = 1− z + o(z) with z = δ∇ · g(x). (24) follows from the fact that p(x′) = p(x) + o(1), ∇ · g(x′) = ∇ · g(x) + o(1).
(25) is due to p(x) = p(x′)− (x′ − x) · ∇p(x′) + o(δ). Since x′ ∈ Rk is arbitrary, this implies that:

p′(x) = p(x)− δg(x) · ∇p(x)− δp(x)∇ · g(x) + o(δ),

for all x ∈ Rk, which leads to the desired result by taking δ → 0, setting g = gt, and noting that p = pt as both are the
density of Gt(Z).

Proof of Theorem 2.1
Using the chain rule and Lemma A.1, we have

d

dt
`(p∗(x), pt(x)) =`′2(p∗(x), pt(x))

d

dt
pt(x)

=`′2(p∗(x), pt(x))(−∇pt(x) · gt(x)− pt(x)∇ · gt(x))

=pt(x)∇x`′2(p∗(x), pt(x)) · gt(x)−∇x · [`′2(p∗(x), pt(x))pt(x)gt(x)] . (26)

The third equality follows from

∇x · [`′2(p∗(x), pt(x))pt(x)gt(x)] = `′2(p∗(x), pt(x))pt(x)[∇ · gt(x)]

+ `′2(p∗(x), pt(x))[∇pt(x)] · gt(x)

+ [∇x`′2(p∗(x), pt(x))] · [pt(x)gt(x)],

which is obtained by applying the product rule to ∇x · [`′2(p∗(x), pt(x))pt(x)gt(x)]. Now, by integrating (26) over x, and by
using the fact that

∫
∇ · f(x)dx = 0 with f(x) = `′2(p∗(x), pt(x))pt(x)gt(x), we obtain the desired bound.

APPENDIX B
SUPPLEMENTS TO SECTION 3 (DISCRETE THEORY)
B.1 Proof of Theorem 3.1
Theorem 3.1 in the main paper can be obtained by setting α = 1 in Theorem B.1 below.

B.2 Weighted version of discrete theory: Theorem B.1
Theorem 3.1 is a special case of Theorem B.1 below, where we consider a weighted logistic regression problem and a
weighted KL divergence. We first state the definitions and assumptions of the weighted version.

B.2.1 Definitions
Let α ∈ (0.5, 1] be a tuning parameter, and let ᾱ = 1− α. Theorem 3.1 is obtaned by setting α = 1 in Theorem B.1.

Define a function Dα as:

Dα(x) := ln
αp∗(x) + ᾱp(x)

ᾱp∗(x) + αp(x)
(27)

Then, Dα is the analytical solution to the following weighted logistic regression problem:

Dα = arg min
D′

[
α
(
Ex∼p∗ ln(1 + e−D

′(x)) + Ex∼p ln(1 + eD
′(x))

)
+ ᾱ

(
Ex∼p ln(1 + e−D

′(x)) + Ex∼p∗ ln(1 + eD
′(x))

)]
.

In practice, Dα should be approximated by solving:

arg min
D′

α
∑
x∈S∗

ln(1 + e−D
′(x))

|S∗|
+
∑
x∈S

ln(1 + eD
′(x))

|S|

+ ᾱ

∑
x∈S

ln(1 + e−D
′(x))

|S|
+
∑
x∈S∗

ln(1 + eD
′(x))

|S∗|

 , (28)

where S∗ and S are sets of data points sampled according to p∗ and p, respectively. Let Dα be the solution to this empirical
problem.

Define the weighted KL divergence by:

Lα(p) :=

∫
(αp∗(x) + ᾱp(x)) ln

αp∗(x) + ᾱp(x)

ᾱp∗(x) + αp(x)
dx . (29)

B.2.2 Assumptions
Assumptions B.1 and B.2 below are the weighted versions of Assumptions 3.1 and 3.2, respectively.
Assumption B.1 (Boundedness of the weighted pdf ratio). |Dα(x)| is bounded so that there exists a positive number B <∞

such that |Dα(x)| ≤ B.

Assumption B.2 (ε-approximation condition on the discriminator). Dα, the empirical solution to (28), satisfies the following
ε-approximation condition for some ε such that 0 ≤ ε <∞∫

q∗(x)
(
α |Dα(x)−Dα(x)|+ ᾱ

∣∣∣eDα(x) − eDα(x)∣∣∣) dx ≤ ε where q∗(x) = p∗(x) max(1, ‖∇ ln p∗(x)‖) .

Although it has exponential terms, they are multiplied with ᾱ, which should be small.
Assumption B.3 (Nonzero smooth light-tailed p∗). There are constants c0, h0 > 0 such that when h ∈ (0, h0), we have∫

sup
‖g‖≤h

|p∗(x) +∇p∗(x)>g − p∗(x+ g)|dx ≤ c0h2,∫
sup‖g‖≤h |p∗(x+ g)− p∗(x)|2

p∗(x)
dx ≤ c0h2,∫

‖∇p∗(x)‖dx ≤ c0.

Assumption B.3 holds, e.g., for Gaussian distributions and mixtures of Gaussians as well as other smooth distributions
with light tails. If we assume that ∇2 ln p∗(x) is continuous, then it can be simplified to the following conditions, which are
easier to verify. ∫

sup
‖g‖≤h

‖∇2 ln p∗(x+ g)‖ p∗(x)dx <∞,∫
sup
‖g‖≤h

[
e2h‖∇ ln p∗(x+g)‖‖∇ ln p∗(x+ g)‖2

]
p∗(x)dx <∞,∫

‖∇ ln p∗(x)‖ p∗(x)dx <∞.

Technically, Assumption B.3 can be removed by approximating p∗ with a density function of this property (e.g., a Gaussian
mixture, which can approximate any density) and then conducting the analysis with this approximating density in place of
p∗. But we instead just assume that p∗ has this property as it is simpler.

Remark: For Assumption B.1 to hold, if α = 1 as in the main paper, p∗ and p need to be nonzero everywhere. If we set
α < 1, we can take B = ln(α/ᾱ) <∞ and the nonzero constraints on p and p∗ can be relaxed to not being zero at the same
time; in this case, since nonzero p∗ is assumed in Assumption B.3, we assume p∗ to be nonzero instead of p.

To state the assumptions above, we have implicitly assumed that the distributions of interest are absolutely continuous
and so permit a density. In modeling data, an advantage of distributions with smooth nonzero densities is that they are
easier to deal with than, for example, a distribution with a support contained in a low dimensional manifold [1], [2]. If
needed, there are several things that can be done in practice for encouraging the discriminator to behave as assumed:

• Set α < 1 (e.g., α = 0.999) and update the discriminator for the weighted logistic regression problem above.
• Add a small Gaussian noise to every observed data point, as also suggested by [1].
• Regularize the discriminator with the gradient penalty as suggested by [38], [26] to approximate the effect of adding

noise.

However, interestingly, our experiments on image generation indicate that we do not have to do any of these things to
achieve stable training to obtain good performances rivaling the state of the art methods. This is a good thing as we do not
have to adjust α or the noise amount or the degree of regularization or incur the overhead of regularization.

B.2.3 Weighted version of discrete theorem
Theorem B.1. Under the definitions and assumptions above, let g : Rk → Rk be a continuously differentiable transformation

such that ‖g(·)‖ ≤ a and ‖∇g(·)‖ ≤ b. Let p and p′ be the probability densities of a random variable X and X ′,
respectively, such that X ′ = X + ηg(X) where 0 < η < min(1/b, h0/a). Then there exists a positive constant c such that:

Lα(p′) ≤ Lα(p)− η
∫
p∗(x)(α− ᾱ exp(Dα(x))) g(x)>∇Dα(x) dx+ cη2 + cηε.

B.3 Proof of Theorem B.1

Note that we continue to use the notation given at the beginning of Appendix A. We also need the following lemmas.
Lemma B.1. Assume that g(x) : Rk → Rk is a continuously differentiable transformation. Assume that ‖g(x)‖ ≤ a and
‖∇g(x)‖ ≤ b, then when ηb < 1, the inverse transformation x = h−1(x′) of x′ = h(x) = x+ ηg(x) is unique.
Moreover, consider transformation of random variables by h−1(·). Define p̃∗ to be the associated probability density
function after this transformation when the pdf before the transformation is p∗. Then for any x ∈ Rk, we have:

p̃∗(x) = p∗(h(x))|det(∇h(x))|. (30)

Similarly, we have
p(x) = p′(h(x))|det(∇h(x))|, (31)

where p and p′ are defined in Theorem B.1.

Proof Given x′, define map g′(x) as g′(x) = x′ − ηg(x), then the assumption implies that g′(x) is a contraction when
ηb < 1: ‖g′(x)− g′(x′)‖ ≤ ηb‖x− x′‖. Therefore g′(x) has a unique fixed point x, which leads to the inverse transformation
h−1(x′) = x.

(30) and (31) follow from the standard density formula under transformation of variables.

Lemma B.2. Under the assumptions of Lemma B.1, there exists a constant c > 0 such that

|det(∇h(x))− (1 + η∇ · g(x))| ≤ cη2. (32)

Proof
We note that

∇h(x) = I + η∇g(x).

Therefore
det(∇h(x)) = 1 + η∇ · g(x) +

∑
j≥2

ηjmj(g(x)),

where mj(g) is a function of ∇g. Since ∇g is bounded, we obtain the desired formula.

Lemma B.3. Under the assumptions of Lemma B.1, and assume that Assumption B.3 holds, then there exists a constant c > 0
such that ∫ ∣∣p̃∗(x)− (p∗(x) + ηp∗(x)∇ · g(x) + η∇p∗(x)>g(x))

∣∣dx ≤ cη2. (33)

and ∫
(p̃∗(x)− p∗(x))2

p∗(x)
dx ≤ cη2. (34)

Proof Using the algebraic inequality∣∣p∗(h(x))|det(∇h(x))| − (p∗(x) + ηp∗(x)∇ · g(x) + η∇p∗(x)>g(x))
∣∣

≤
∣∣p∗(h(x))− (p∗(x) + η∇p∗(x)>g(x))

∣∣ ∣∣ det(∇h(x))
∣∣

+
∣∣(p∗(x) + η∇p∗(x)>g(x))

∣∣ ∣∣(1 + η∇ · g(x))− | det(∇h(x))|
∣∣

+ η2
∣∣∇ · g(x) ∇p∗(x)>g(x))

∣∣,
and using p̃∗(x) = p∗(h(x))|det(∇h(x))| from (30), we obtain∫ ∣∣p̃∗(x)− (p∗(x) + ηp∗(x)∇ · g(x) + η∇p∗(x)>g(x))

∣∣dx
≤
∫ ∣∣p∗(h(x))− (p∗(x) + η∇p∗(x)>g(x))

∣∣ |det(∇h(x))|dx︸ ︷︷ ︸
A0

+

∫ ∣∣(p∗(x) + η∇p∗(x)>g(x))
∣∣ ∣∣(1 + η∇ · g(x))− | det(∇h(x))|

∣∣ dx︸ ︷︷ ︸
B0

+ η2
∫ ∣∣∇ · g(x) ∇p∗(x)>g(x))

∣∣dx︸ ︷︷ ︸
C0

≤cη2

for some constant c > 0, which proves (33). The last inequality uses the following facts.

A0 =

∫ ∣∣p∗(h(x))− (p∗(x) + η∇p∗(x)>g(x))
∣∣ O(1)dx = O(η2),

where the first equality follows from the boundedness of g and ∇g, and the second equality follows from the first inequality
of Assumption B.3.

B0 =

∫ ∣∣(p∗(x) + η∇p∗(x)>g(x))
∣∣ O(η2) dx = O(η2),

where the first equality follows from (32), and the second equality follows from the third equality of Assumption B.3.

C0 =

∫
‖∇p∗(x)‖O(1)dx = O(1),

where the first equality follows from the boundedness of g and ∇g, and the second equality follows from the third equality
of Assumption B.3.

Moreover, using (30), we obtain

|p̃∗(x)− p∗(x)| ≤ |p∗(h(x))− p∗(x)| |det(∇h(x))|+ p∗(x)||det(∇h(x))| − 1|.

Therefore ∫
(p̃∗(x)− p∗(x))2

p∗(x)
dx

≤2

∫
(p∗(h(x))− p∗(x))2|det(∇h(x))|2 + p∗(x)2(|det(∇h(x))| − 1)2

p∗(x)
dx ≤ cη2

for some c > 0, which proves (34). The second inequality follows from the second inequality of Assumption B.3, and the
boundedness of |det(∇h(x))|, and the fact that ||det(∇h(x))| − 1| = O(η) from (32).

Proof of Theorem B.1

In the following integration, with a change of variable from x to x′ using x′ = h(x) as in Lemma B.1, we obtain

∫
(αp∗(x

′) + ᾱp′(x′)) ln

(
αp∗(x

′) + ᾱp′(x′)

ᾱp∗(x′) + αp′(x′)

)
dx′

=

∫
(αp∗(h(x)) + ᾱp′(h(x))) ln

(
αp∗(h(x)) + ᾱp′(h(x))

ᾱp∗(h(x)) + αp′(h(x))

)
|det(∇h(x))|dx

=

∫
(αp̃∗(x) + ᾱp(x)) ln

αp̃∗(x) + ᾱp(x)

ᾱp̃∗(x) + αp(x)
dx,

where the first equality is basic calculus, and the second equality uses (30) and (31).
It follows that

Lα(p′) =

∫
(αp∗(x

′) + ᾱp′(x′)) ln
αp∗(x

′) + ᾱp′(x′)

ᾱp∗(x′) + αp′(x′)
dx′

=

∫
(αp̃∗(x) + ᾱp(x)) ln

αp̃∗(x) + ᾱp(x)

ᾱp̃∗(x) + αp(x)
dx

=A1 +B1 + C1,

where A1, B1, and C1 are defined as follows.

A1 =

∫
(αp̃∗(x) + ᾱp(x)) ln

αp∗(x) + ᾱp(x)

ᾱp∗(x) + αp(x)
dx

=

∫
(αp∗(x) + ᾱp(x)) ln

αp∗(x) + ᾱp(x)

ᾱp∗(x) + αp(x)
dx

+ ηα

∫
(p∗(x)∇ · g(x) +∇p∗(x)>g(x)) ln

αp∗(x) + ᾱp(x)

ᾱp∗(x) + αp(x)
dx+O(η2)

=Lα(p) + αη

∫
∇ · (p∗(x)g(x)) Dα(x)dx+O(η2)

=Lα(p) + αη

∫
∇ · (p∗(x)g(x)) Dα(x)dx+O(ηε+ η2)

=Lα(p)− αη
∫
p∗(x)g(x)>∇Dα(x)dx+O(ηε+ η2),

where the second equality uses (33) and the assumption that B < ∞ (Assumption B.1) The fourth equality uses the
ε-approximation condition (Assumption B.2). The last equality uses integration by parts and (21).

B1 =

∫
(αp̃∗(x) + ᾱp(x)) ln

αp̃∗(x) + ᾱp(x)

αp∗(x) + ᾱp(x)
dx

=

∫
(αp̃∗(x) + ᾱp(x)) ln

(
1 + α

p̃∗(x)− p∗(x)

αp∗(x) + ᾱp(x)

)
dx

≤α
∫

(αp̃∗(x) + ᾱp(x))
p̃∗(x)− p∗(x)

αp∗(x) + ᾱp(x)
dx

=α

∫
(αp̃∗(x)− αp∗(x))

p̃∗(x)− p∗(x)

αp∗(x) + ᾱp(x)
+ α

∫
(αp∗(x) + ᾱp(x))

p̃∗(x)− p∗(x)

αp∗(x) + ᾱp(x)
dx︸ ︷︷ ︸

0

=α2

∫
(p̃∗(x)− p∗(x))2

αp∗(x) + ᾱp(x)
dx = O(η2),

where the inequality uses ln(1 + δ) ≤ δ. The second to the last inequality uses the fact that
∫
p̃∗(x)dx =

∫
p∗(x)dx = 1. The

last equality uses (34).

C1 =

∫
(αp̃∗(x) + ᾱp(x)) ln

ᾱp∗(x) + αp(x)

ᾱp̃∗(x) + αp(x)
dx

=

∫
(αp̃∗(x) + ᾱp(x)) ln

(
1 + ᾱ

p∗(x)− p̃∗(x)

ᾱp̃∗(x) + αp(x)

)
dx

≤ᾱ
∫

(αp̃∗(x) + ᾱp(x))
p∗(x)− p̃∗(x)

ᾱp̃∗(x) + αp(x)
dx

=ᾱ

∫
(αp̃∗(x) + ᾱp(x))

p∗(x)− p̃∗(x)

(ᾱp̃∗(x) + αp(x))(ᾱp∗(x) + αp(x))
(ᾱp∗(x) + αp(x))dx

=ᾱ

∫
(αp̃∗(x) + ᾱp(x))

p∗(x)− p̃∗(x)

(ᾱp̃∗(x) + αp(x))(ᾱp∗(x) + αp(x))
((ᾱp̃∗(x) + αp(x)) + ᾱ(p∗(x)− p̃∗(x))) dx

=ᾱ

∫
(αp̃∗(x) + ᾱp(x))

p∗(x)− p̃∗(x)

ᾱp∗(x) + αp(x)
dx+ ᾱ2

∫
(αp̃∗(x) + ᾱp(x))

(p∗(x)− p̃∗(x))2

(ᾱp̃∗(x) + αp(x))(ᾱp∗(x) + αp(x))
dx

=
(a)
ᾱ

∫
(αp̃∗(x) + ᾱp(x))

p∗(x)− p̃∗(x)

ᾱp∗(x) + αp(x)
dx+O(η2)

=
(b)
− ᾱ

∫
(αp∗(x) + ᾱp(x))

ηp∗(x)∇ · g(x) + η∇p∗(x)>g(x)

ᾱp∗(x) + αp(x)
dx+O(η2)

=− ᾱη
∫

(p∗(x)∇ · g(x) +∇p∗(x)>g(x)) exp(Dα(x))dx+O(η2)

=
(c)
− ᾱη

∫
(p∗(x)∇ · g(x) +∇p∗(x)>g(x)) exp(Dα(x))dx+O(ηε+ η2)

=− ᾱη
∫

(∇ · (p∗(x)g(x))) exp(Dα(x))dx+O(ηε+ η2)

=ηᾱ

∫
p∗(x)g(x)>∇ exp(Dα(x))dx+O(ηε+ η2),

where the first inequality uses ln(1 + δ) ≤ δ. The equality (a) uses (34). The equality (b) uses (33). The equality (c) uses the
ε-approximation condition (Assumption B.2) The last equality uses integration by parts and (21).

By combining the estimates of A1, B1, and C1, we obtain the desired bound.

B.4 Other f -divergences
In Theorem B.1 (and Theorem 3.1, a special case of Theorem B.1), the distance measure is specifically the KL divergence.
It is possible to obtain similar results on other f -divergences; however, doing so could require rather complex regularity
conditions. For the KL divergence, f(γ) = − ln(γ), and so f(γ) is convex while f(1/γ) = ln(γ) is concave, and we can use
the inequality ln γ ≤ γ − 1 to drop the second-order terms in the upper bounds of quantities B1 and C1 in the proof above.
This simplifies the regularity conditions on the shape of p∗ as given in Assumption B.3.

B.5 Convergences
Lemma B.4. As in Sections 2 and 3, let φ : Rk → Rk be a vector function that satisfies φ(u) = u · φ0(u) ≥ 0 with some

φ0 : Rk → Rk and φ(u) = 0 if and only if u = 0. Suppose that we have a function qt : Rk → R such that qt(x) ≥ 0 and a
vector function ht : Rk → Rk, and that qt(x)φ(ht(x)) is continuous. If we have

lim
t→∞

∫
qt(x)φ(ht(x))dx = 0 , (35)

then we have limt→∞ qt(x)ht(x) = 0 pointwise everywhere.

Proof (35) and qt(x)φ(ht(x)) ≥ 0 implies limt→∞ qt(x)φ(ht(x)) = 0 pointwise almost everywhere. The continuity
condition further eliminates the possibility of qt(x)φ(ht(x)) going to nonzero in sets of measure 0, and so we obtain
limt→∞ qt(x)φ(ht(x)) = 0 pointwise everywhere. Since φ(ht(x)) = 0 iff ht(x) = 0, this implies limt→∞ qt(x)ht(x) = 0
pointwise everywhere, as desired.

To obtain (10) limt→∞ pt(x)∇x`′2(p∗(x), pt(x)) = 0 in the continuous analysis, apply Lemma B.4 to
limt→∞

∫
st(x)pt(x)φ(∇x`′2(p∗(x), pt(x)))dx = 0 with qt(x) = st(x)pt(x) and ht(x) = ∇x`′2(p∗(x), pt(x)).

To obtain limt→∞ p∗(x)∇Dt(x) = 0 at the end of Section 3 in the discrete analysis, apply Lemma B.4 to
limt→∞

∫
p∗(x)st(x)‖∇Dt(x)‖22dx = 0 with qt(x) = p∗(x)st(x), ht(x) = ∇Dt(x), φ(u) = ‖u‖22, and φ0(u) = u.

In both, further use the fact that the limit holds for an arbitrary function st(x) such that st(x) > 0, which includes the
one that satisfies st(x) ≥ c for some positive constant c (thus not converging to 0).

(a) Real images (b) Generated by xICFG (convolutional)

Fig. 16: ‘Best’ digits. MNIST. For each digit, showing images with the highest probabilities among 1000 images that were either (a)
randomly chosen from real data or (b) generated by xICFG.

(a) Real images (b) Generated by xICFG (convolutional)

Fig. 17: ‘Worst’ digits. MNIST. Images with the highest entropy among 1000 images that were either (a) randomly chosen from
real data or (b) generated by xICFG. In some of the generated images in (b), it is hard to tell what the digits are, but that is also true
in some of the real images in (a).

(a) Real images (b) Generated by xICFG (convolutional)

Fig. 18: ‘Best’ digits. SVHN. For each digit, showing images with the highest probabilities among 1000 images that were either (a)
randomly chosen from real data or (b) generated by xICFG.

(a) Real images (b) Generated by xICFG (convolutional)

Fig. 19: ‘Worst’ digits. SVHN. Images with the highest entropy among 1000 images that were either (a) randomly chosen from real
data or (b) generated by xICFG. In some of the generated images in (b), it is hard to tell what the digits are, but that is also true in
some of the real images in (a).

APPENDIX C
SUPPLEMENTS TO SECTION 5 (EXPERIMENTS)
C.1 Image examples
As was done for the LSUN images in the main paper, we take a focused approach to show example images. We generate
1000 images by xICFG trained with the convolutional networks as in Fig. 2 and show the ‘best’ and ‘worst’ images among
them. Similar to the inception score, the ‘goodness’ of images are measured by the confidence of a classifier, e.g., a image that
a classifier assigns a high probability of being a “bedroom” is considered to be a good bedroom image. The ‘worst’ images
are those with the highest entropy values. They are the best and worst contributors to the inception score, respectively, as
well. In Figures 16–25, we compare real images and generated images side by side that were chosen by the same procedure
from a random sample of 1000 real images or 1000 generated images (generated from one sequence of random inputs),
respectively.

(a) Real images. (b) Generated by xICFG (4-block ResNet)

Fig. 20: Bedrooms ‘best’ among 1000 (LSUN BR+LR). Predicted by a classifier to be “bedroom” with the highest probabilities
among 1000 images that were either (a) randomly chosen from real data or (b) generated by xICFG.

(a) Real images. (b) Generated by xICFG (4-block ResNet)

Fig. 21: Living rooms ‘best’ among 1000 (LSUN BR+LR). Predicted by a classifier to be “living room” with the highest probabilities
among 1000 images that were either (a) randomly chosen from real data or (b) generated by xICFG.

(a) Real images. (b) Generated by xICFG (4-block ResNet)

Fig. 22: Bedrooms/living rooms ‘worst’ among 1000 (LSUN BR+LR). Images with the highest entropy among 1000 images that
were either (a) randomly chosen from real data or (b) generated by xICFG. The generated images in (b) could be either of relatively
low quality or depicting hard-to-classifiy rooms as the real images in (a) are.

(a) Real images. (b) Generated by xICFG (4-block ResNet)

Fig. 23: Towers ‘best’ among 1000 (LSUN T+B). Predicted by a classifier to be “tower” with the highest probabilities among 1000
images that were either (a) randomly chosen from real data or (b) generated by xICFG.

(a) Real images. (b) Generated by xICFG (4-block ResNet)

Fig. 24: Bridges ‘best’ among 1000 (LSUN T+B). Predicted by a classifier to be “bridge” with the highest probabilities among 1000
images that were either (a) randomly chosen from real data or (b) generated by xICFG.

(a) Real images. (b) Generated by xICFG (4-block ResNet)

Fig. 25: Towers/bridges ‘worst’ among 1000 (LSUN T+B). Images with the highest entropy among 1000 images that were either (a)
randomly chosen from real data or (b) generated by xICFG. The generated images in (b) could be either of relatively low quality or
depicting hard-to-classify objects as the real images in (a) are.

C.2 Details of the experiments

C.2.1 Network architectures

MNIST and SVHN in Figure 2: The convolutional architectures used for MNIST and SVHN are an extension of DCGAN,
inserting 1×1 convolution layers.

Approximator/Generator Discriminator
1 Projection 1 Convolution, 5×5, stride 2
2 ReLU 2 LeakyReLU
3 Transposed conv, 5×5, stride 2 3 Convolution, 5×5, stride 2
4 BatchNorm 4 BatchNorm
5 ReLU 5 LeakyReLU
6 Convolution, 1×1, stride 1 6 Convolution, 1×1, stride 1
7 BatchNorm 7 BatchNorm
8 ReLU 8 LeakyReLU
9 Transposed conv, 5×5, stride 2 9 Flatten
10 tanh 10 Linear
Repeat 2–7 twice. Repeat 3–8 twice.

For the discriminator, start with 32 (MNIST) or 64 (SVHN) feature maps and double it at downsampling except for the
first downsampling. For the approximator/generator, start with 128 (MNIST) or 256 (SVHN) and halve it at upsampling
except for the last upsampling.

LSUN in Figure 2: The convolutional architecture used for LSUN is a simplification of a residual network found in the
WGANgp code release, reducing the number of batch normalization layers for speedup, removing some irregularity, and so
forth. Both the approximator/generator and discriminator are a residual network with four convolution blocks.

Approximator/Generator Discriminator
1 Projection 1 ReLU (omitted in the 1st block)
2 ReLU 2 Convolution, 3×3, stride 1
3 Upsampling (×2), nearest 3 ReLU
4 Convolution, 3×3, stride 1 4 Convolution, 3×3, stride 1
5 ReLU 5 BatchNorm
6 Convolution, 3×3, stride 1 6 Downsampling (/2), mean
7 BatchNorm 7 ReLU
8 ReLU 8 Flatten
9 Convolution, 3×3, stride 1 9 Linear
10 tanh Repeat 1–6 four times.

Repeat 2–7 four times.

2–7 of the approximator/generator and 1–6 of the discriminator are convolution blocks with a shortcut connecting the
beginning to the end. In the approximator/generator, the numbers of feature maps are 512 (produced by the projection
layer) and 256, 256, 128, 128, 64, 64, 64, and 64 (produced by the convolution layers). In the discriminator, the numbers of
feature maps produced by the convolution layers are 64, 64, 64, 128, 128, 256, 256, and 512.

C.2.2 Details of experimental settings for xICFG

The network weights were initialized by the Gaussian with mean 0 and standard deviation 0.01.
The rmsprop learning rate for xICFG (for updating the discriminator and the approximator) was fixed to 0.0001 across

all the datasets when the approximator was fully-connected. Although 0.0001 worked well also for the convolutional
approximator cases, these cases turned out to tolerate and benefit from a more aggressive learning rate resulting in faster
training; hence, it was fixed to 0.00025 across all the datasets. Additionally, if we keep training long enough, the discriminator
may eventually overfit as also noted on WGANgp in [11], or it may go to the overtrained state. It may be useful to reduce
the learning rate (e.g., by multiplying 0.1) towards the end of training if the onset of discriminator overfit/overtraining
needs to be delayed. Another option is to increase N and/or U as discussed in Section 5.2.4.

To choose η used for generator update Gt+1(z) = Gt(z) + η∇D(Gt(z)), we tried some of {0.1, 0.25, 0.5, 1, 2.5} (not
all as we tried only promising ones) for each configuration, following the meta-parameter selection protocol described in
Section 5.1. Typically, multiple values were found to work well, and the table below shows the values used for the reported
results.

MNIST SVHN BR+LR T+B
convolutional (Fig.2) 0.5 0.25 1 1
conv. no batch norm (Fig.3) 2.5 0.5 2.5 2.5
fully-connected (Fig.4) 0.1 0.25 0.5 0.5

In general, similar to the SGD learning rate, a larger η leads to faster training, but a too large value would break training.
A too small value should be avoided since stable training requires a generator to make sufficient progress before each
approximator update.

In our experiments, we fixed the scaling factor st(x) to 1. It may be worth exploring methods of dynamically changing it
with time t and/or data x for performance improvement or speeding up training.

C.2.3 ∆D and the KL divergence
In Section 5.2.3, we show that the quality of an xICFG generator correlates to ‘|D(real)−D(gen)|’ (∆D in short), which
is the difference between the discriminator output values for real images and generated images averaged over time
intervals of a fixed length, obtained as a by-product of the forward propagation for updating the discriminator. When
D is trained for the logistic regression objective using real data and generated data as positive and negative examples,
we have D(x) ≈ ln(p∗(x)/p(x)) where p∗ and p are the probability density functions of the real data and generated data,
respectively. Therefore, we have

Ex∼p∗D(x)− Ex∼pD(x) ≈
∫
p∗(x) ln

p∗(x)

p(x)
dx+

∫
p(x) ln

p(x)

p∗(x)
dx . (36)

∆D is related to the left-hand side of (36), and the right-hand side of (36) is the sum of the KL divergence and the reverse KL
divergence between the two disctirubtions, which we have shown in Section 2 that the CFG algorithm optimizes.

However, ∆D is not a good estimate of this quantity, and in particular, it should not be used for evaluation. To make a
good estimate of (36), D should be trained in a way independent of training; otherwise, the estimate would be influenced
by the training settings such as meta-parameters. For the same reason, ∆D is not comparable across training runs, but
empirically, it is useful when compared within a run and it can be obtained at almost no cost during training.

C.2.4 Details of the experiments in Section 5.2.5
The experiments with spectral normalization (GAN-sn) [29] and the zero-centered gradient penalty (GAN-gp) [26] were done
as follows. Following the original studies, the training objective was set to the one with the logd trick. Batch normalization
was removed from the discriminator also following the original work (we tested several cases and found that indeed
better results were obtained by doing so). The regularization parameter for GAN-gp was set to 10 as in the original study.
Optimization was done with rmsprop as was done for xICFG and the original GANs. We tuned the learning rate and U
(the discriminator update frequency) choosing from {1,5}. The network weights were initialized as was done for the other
methods (the Gaussian with mean 0 and standard deviation 0.01) for GAN-gp, and for GAN-sn, we chose between this
default method and the method used in the GAN-sn code release by the authors of the original work, which is the uniform
Glorot initialization [9] with an additional scaling factor per layer. We also tried spectral normalization in the generator as it
was useful in [47], [4], but it did not help in our cases. We conjecture that this is because of the differences in the network
architecture and the task setting (unconditional vs. class-conditional). Tuning was done according to the tuning protocol
in Section 5.1.6. For xICFG with convolutional networks on MNIST, we set U=10 and N=100b as this setting was found
slightly better in Section 5.2.4, and the default (U=1,N=10b) was used for the rest. For all the methods, to perform 3 runs
using 3 different random seeds, we generally did tuning using one seed and used the chosen settings for all 3 runs, and only
when the outcome deviated a lot from the expected values, did we tuning specifically for that run. The reported results are
at the timing of the right end of Fig. 2 and 4 (the figures plotting the scores in relation to training time) except for a few runs
where training collapsed before reaching that point; in such cases, the performances before the collapse are reported (early
stopping based on the validation performances). It was noted in [4] that better performances were obtained by doing so
rather than tuning the setting (e.g., tightening regularization) so that training would never collapse. We followed this tip.

C.2.5 Classifiers used for evaluation
For evaluation, classifiers in the following network architecture were trained on each dataset.

1 convolution, 5×5, stride 1
2 ReLU
3 Max pooling, 3×3, stride 2
4 convolution, 5×5, stride 1
5 BatchNorm
6 ReLU
7 Average pooling, 3×3, stride 2
8 Flatten
9 Linear

Repeat 4–7 three times (LSUN)
or twice (MNIST/SVHN).

The number of feature maps produced by convolution layers was 64 at the beginning and doubled at every downsampling.
The training sets (also used for training generative models) were disjoint from the held-out sets that were used for evaluating
the Fréchet distance and estimating the inception score upper bounds shown in Section 5.2.1.

C.3 Additional experiments on CelebA
This section provides additional experimental results on the face image dataset CelebA. All the images were shrunk and
center-cropped into 128×128, larger than those in the main paper. We held out 10K images and used the remaining 193K
images for training. For evaluation, we trained a male/female classifier; the architecture was as in Appendix C.2.5, with 4–7
repeated four times and not doubling the number of feature maps for the last convolution layer.

Figure 26 shows the inception score and Fréchet distance results, obtained by using the DCGAN extension (as in
C.2.14) with (a) removing batch normalization from the discriminator (not only for WGANgp but also for all), and (b)
removing batch normalization from both the discriminator and approximator/generator. With xICFG and WGANgp, both
the inception score and Fréchet distance generally improve as training proceeds. By contrast, the performance of GAN0 and
GAN1 is somewhat erratic. These results are consistent with the results on the other datasets in the main paper.

Using the same procedure as C.1, Figures 27–29 show examples of ‘best’ and ‘worst’ images from real data, images
generated by xICFG and the best-performing baseline (WGANgp). The ‘best’ images are those which were assigned by
the male/female classifier the highest probability that they are men/women among a random sample of 1000 images. The
‘worst’ images are those with the highest entropy among the same random sample of 1000 images used for choosing the
‘best’ images. The ‘best’ images generated by xICFG (Fig. 27b and 28b) are of high quality even though they are not perfect
when compared with real images in detail. The real images with the highest entropy (Fig. 29a) appear to be outliers in terms
of age (see the child and the older lady), the presence of objects around the face (see the sunglasses and the hat), the angle
of the face, and so forth. They are diverse and make a good contrast to the ‘best’ real men and women (Fig. 27a and 28a),
which look like typical celebrity face images. Accordingly, the highest-entropy images generated by xICFG (Fig. 29b) are
diverse, and also, some of them are of low quality. Overall, we feel that visual impression of the images generated by xICFG
is as good as, if not better than, that of WGANgp images.

1.5
1.6
1.7
1.8
1.9

0 50 100

Sc
or

e

Training time (K seconds)

3

8

13

18

0 50 100

D
is

ta
nc

e

Training time (K seconds)
xICFG WGANgp GAN0 GAN1

(a) No batch normalization in D.

1.5
1.6
1.7
1.8
1.9

0 50 100

Sc
or

e

Training time (K seconds)

3

8

13

18

0 50 100

D
is

ta
nc

e

Training time (K seconds)
xICFG WGANgp GAN0 GAN1
(b) No batch normalization anywhere.

Fig. 26: CelbA (128×128) Inception score and Fréchet distance results. DCGAN extension.

4. For the discriminator, start with 64 feature maps and double it at downsampling except for the first and last downsampling. For the
approximator/generator, start with 512 feature maps and halve it at upsampling except for the first and last upsampling.

(a) Real data (b) xICFG (c) Best baseline (WGANgp)
Fig. 27: ‘Best’ men with the highest probability to be a man assigned by a classifier among 1000. Celeba (128×128).

(a) Real data (b) xICFG (c) Best baseline (WGANgp)
Fig. 28: ‘Best’ women with the highest probability to be a woman assigned by a classifier among 1000. Celeba (128×128).

(a) Real data (b) xICFG (c) Best baseline (WGANgp)
Fig. 29: ‘Worst’ with the highest entropy among a random sample of 1000 real/generated images. Celeba (128×128).

