
Guided Learning of Nonconvex Models through Successive Functional
Gradient Optimization

Rie Johnson 1 Tong Zhang 2

Abstract
This paper presents a framework of successive
functional gradient optimization for training non-
convex models such as neural networks, where
training is driven by mirror descent in a function
space. We provide a theoretical analysis and em-
pirical study of the training method derived from
this framework. It is shown that the method leads
to better performance than that of standard train-
ing techniques.

1. Introduction
This paper presents a new framework to train nonconvex
models such as neural networks. The goal is to learn a
vector-valued function f(θ;x) that predicts an output y
from input x, where θ is the model parameter. For exam-
ple, for K-class classification where y ∈ {1, 2, . . . ,K},
f(θ;x) is K-dimensional, and it can be linked to con-
ditional probabilities via the soft-max logistic function.
Given a set of training data S, the standard method for
solving this problem is to use stochastic gradient descent
(SGD) for finding a parameter that minimizes on S a loss
function L(f(θ;x), y) with a regularization term R(θ):
minθ

[
1
|S|
∑

(x,y)∈S L(f(θ;x), y) +R(θ)
]
.

In this paper, we consider a new framework that guides
training through successive functional gradient descent so
that training proceeds with alternating the following:

• Generate a guide function so that it is ahead (but not
too far ahead) of the current model with respect to the
minimization of the loss. This is done by functional
gradient descent.

• ‘Push’ the model towards the guide function.

1RJ Research Consulting, Tarrytown, New York, USA 2Hong
Kong University of Science and Technology, Hong Kong. Cor-
respondence to: Rie Johnson <riejohnson@gmail.com>, Tong
Zhang <tongzhang@tongzhang-ml.org>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

Our original motivation was functional gradient learning of
additive models in gradient boosting (Friedman, 2001). In
our framework, essentially, training proceeds with repeating
a local search, which limits the searched parameter space to
the functional neighborhood of the current parameter at each
iteration, instead of searching the entire space at once as
the standard method does. This is analogous to ε-boosting
where the use of a very small step-size (for successively
expanding the ensemble of weak functions) is known to
achieve better generalization (Friedman, 2001).

For measuring the distances between models, we use the
Bregman divergence (see e.g., (Bubeck, 2015)) by applying
it to the model output. Given a convex function h, the
Bregman divergence Dh is defined by

Dh(u, v) = h(u)− h(v)−∇h(v)>(u− v). (1)

This is the difference between h(u) and the approximation
of h(u) based on the first-order Taylor expansion around v.
This means that when u− v is small,

Dh(u, v) ≈ 1

2
(u− v)>(H (h(v)))(u− v), (2)

where H (h(v)) denotes the Hessian matrix of hwith respect
to v. Therefore, use of the Bregman divergence has the
beneficial effect of utilizing the second-order information.

We show that the parameter update rule of an induced
method generalizes that of distillation (Hinton et al., 2014).
That is, our framework subsumes iterative self-distillation
as a special case.

Distillation was originally proposed to transfer knowledge
from a high-performance but cumbersome model to a more
manageable model. Various forms of self-distillation, which
applies distillation to the models of the same architecture,
has been empirically studied (Xu & Liu, 2019; Yang et al.,
2019a; Lan et al., 2018; Furlanello et al., 2018; Anil et al.,
2018; Zhang et al., 2018; Tarvainen & Valpola, 2017; Yim
et al., 2017). One trend is to add to the original scheme, e.g.,
adding a term to the update rule, data distortion/division,
more models for mutual learning, and so forth. However,
we are not aware of any work on theoretical understanding
such as a convergence analysis of the basic self-learning
scheme.

Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization

Our theoretical analysis of the proposed framework provides
a new functional gradient view of self-distillation, and we
show a version of the generalized self-distillation procedure
converges to a stationary point of a regularized loss function.
Our empirical study shows that the iterative training of the
derived method goes through a ‘smooth path’ in a restricted
region with good generalization performance. This is in
contrast to standard training, where the entire (and therefore
much larger) parameter space is directly searched, and thus
complexity may not be well controlled.

Notation ∇h(v) denotes the gradient of a scalar function
h with respect to v. We omit the subscript of ∇ when
the gradient is with respect to the first argument, e.g., we
write ∇f(θ;x) for ∇θf(θ;x). H (h(v)) denotes the Hes-
sian matrix of a scalar function h with respect to v. We
use x and y for input data and output data, respectively.
We use <> to indicate the mean, e.g., 〈F (x, y)〉(x,y)∈S =
1
|S|
∑

(x,y)∈S F (x, y). L(u, y) is a loss function with y be-
ing the true output. We also let Ly(u) = L(u, y) when
convenient.

2. Guided Learning through Successive
Functional Gradient Optimization

In this section, after presenting the framework in general
terms, we develop concrete algorithms and analyze them.

2.1. Framework

We first describe the framework in general terms so that the
models to be trained are not limited to parameterized ones.
Let f be the model we are training. Starting from some
initial f , training proceeds by repeating the following:

1. Generate a guide function f∗ by applying functional
gradient descent for reducing the loss to the current
model f , so that f∗ is an improvement over f in terms
of loss but not too far from f .

2. Move the model f in the direction of the guide function
f∗ according to some distance measure.

We use the Bregman divergence Dh, defined in (1), for
representing the distances between models.

Step 1: Guide going ahead We formulate Step 1 as

f∗(x,y):=argmin
q

[
Dh(q,f(x))+α∇Ly(f(x))>q

]
, (3)

where α is a meta-parameter. The second term pushes the
guide function towards the direction of reducing loss, and
the first term pulls back the guide function towards the
current model f . Thus, f∗ is ahead of f but not too far ahead.
Note that we use the knowledge of the true output y here;
therefore, f∗ takes y as the second argument. The function
value for each data point (x, y) can be found approximately

by solving the optimization problem by SGD if there is no
analytical solution. Also, this formulation is equivalent to
finding f∗ such that

∇h(f∗(x, y)) = ∇h(f(x))− α∇Ly(f(x)). (4)

This is mirror descent (see e.g., (Bubeck, 2015)) performed
in a function space.

Due to the relation of the Bregman divergence to the Hessian
matrix stated in (2), (3) implies that

f∗(x, y) ≈ f(x)− α(H (h(f(x))))−1∇Ly(f(x)). (5)

Therefore, if we set h(f) = Ly(f), (5) becomes

f∗(x, y) ≈ f(x)− α(H (Ly(f(x))))−1∇Ly(f(x)), (6)

which is approximately a second-order functional gradient
step (one step of the relaxed Newton method) with step-size
α for minimizing the loss.

If we set h(f) = 1
2‖f‖

2, then the optimization problem (3)
has an analytical solution

f∗(x, y) = f(x)− α∇Ly(f(x)),

which is a first-order functional gradient step with step-size
α for minimizing the loss.

Taking m steps in Step 1 For further generality, let us
also consider m steps of functional gradient descent by
extending f∗ in (3) to f∗m recursively defined as follows.

f∗0 (x, y) := f(x)

f∗i+1(x, y) := arg min
q

[
Dh(q, f∗i (x)) + α∇Ly(f∗i (x))>q

]
.

Then, in parallel to (5), we have

f∗i+1(x, y) ≈ f∗i (x)− α(H (h(f∗i (x))))−1∇Ly(f∗i (x)).

Step 2: Following the guide Using the Bregman diver-
gence Dh, we formulate Step 2 above as an update of the
model f to reduce〈

Dh(f(x), f∗(x, y))
〉
(x,y)∈S +R(f) (7)

so that the model f approaches the guide function f∗ in
terms of the Bregman divergence. R(f) is a regularization
term.

Parameterization Although there can be many variations
of this scheme, in this work, we parameterize the model f
so that we can train neural networks. Thus, we replace f(x)
by f(θ;x) with parameter θ. This does not affect Step 1,
and to reduce (7) in Step 2, we repeatedly update the model
parameter θ by descending the stochastic gradient

∇θ
[〈
Dh(f(θ;x), f∗(x, y))

〉
(x,y)∈B +R(θ)

]
, (8)

where B is a mini-batch sampled from a training set S.

Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization

2.2. Algorithms

Putting everything together, we obtain Algorithm 1, which
performs mirror descent in a function space in Line 3. We
call it (and its derivatives) a method of GUided Learn-
ing through successive Functional gradient optimization
(GULF). We now instantiate function h used by the Breg-
man divergence Dh to derive concrete algorithms. In gen-
eral we allow h to vary for each data point. That is, it may
depend on (x, y). Here we use two functions discussed
above, which correspond to the first-order and the second-
order methods, respectively; however, note that choice of h
is not limited to these two.

Algorithm 1 GULF in the most general form. Input: θ0,
training set S. Meta-parameters: m, α, T . Output: θT .
1: θ ← θ0
2: for t = 0 to T − 1 do
3: Define f∗m by: f∗0 (x, y) := f(θt;x), f∗i+1(x, y) :=

argminq
[
Dh(q, f

∗
i (x, y)) + α∇Ly(f∗i (x, y))>q

]
4: repeat
5: Sample a mini-batch B from S.
6: Update θ by descending the stochastic gradient

∇θ
[〈
Dh(f(θ;x), f

∗
m(x, y))

〉
(x,y)∈B +R(θ)

]
for optimizing

Qt(θ) :=
〈
Dh(f(θ;x), f

∗
m(x, y))

〉
(x,y)∈S +R(θ).

7: until some criteria are met
8: θt+1 ← θ
9: end for

GULF1 (1st-order, Algorithm 2) With h(u) = 1
2‖u‖

2,
we obtain Algorithm 2. Derivation is straightforward. This
algorithm performsm steps of first-order functional gradient
descent (Line 3) to push the guide function ahead of the
current model and then let the model follow the guide by
reducing the 2-norm between them.

Algorithm 2 GULF1 (h(u) = 1
2‖u‖

2): Input: θ0, training
set S. Meta-parameters: m, α, T . Output: θT .
1: θ ← θ0
2: for t = 0 to T − 1 do
3: Define f∗m by: f∗0 (x, y) = f(θt;x),

f∗i+1(x, y) = f∗i (x, y)− α∇Ly(f∗i (x, y))
4: repeat
5: Sample a mini-batch B from S.
6: Update θ by descending the stochastic gradient

∇θ
[〈

1
2
‖f(θ;x)− f∗m(x, y)‖2

〉
(x,y)∈B +R(θ)

]
7: until some criteria are met
8: θt+1 ← θ
9: end for

GULF2 (2nd order, Algorithm 3) We consider the case
of h(p) = Ly(p) (i.e., h returns loss given prediction p). (6)
has shown that in this case Step 1 becomes approximately
the second-order functional gradient descent. Also, with
this choice of h, Algorithm 1 can be converted to a simpler

Algorithm 3 GULF2 (h(p) = Ly(p)): Input: θ0, train-
ing set S. Meta-parameters: α ∈ (0, 1), T . Output: θT .
Notation: fθ = f(θ;x) and fθt = f(θt;x).
θ ← θ0
for t = 0 to T − 1 do

repeat
Sample a mini-batch B from S.
Update θ by descending the stochastic gradient
∇θ
[〈
DLy (fθ, fθt) + α∇Ly(fθt)>fθ

〉
(x,y)∈B +R(θ)

]
until some criteria are met
θt+1 ← θ

end for

form where we do not have to compute the values of the
guide function f∗m explicitly, and where we have one fewer
meta-parameter. This simpler form is shown in Algorithm
3, which has the following relationship to Algorithm 1.

Proposition 2.1 When h(p) = Ly(p) that returns loss
given prediction p, Algorithm 1 with α = γ is equivalent to
Algorithm 3 with α = 1− (1− γ)m.

The proofs are all provided in the supplementary material.

To simplify notation, let fθ = f(θ;x), which is the model
that we are updating, and fθt = f(θt;x), which is a model
that was frozen when time changed from t− 1 to t. In the
stage associated with time t, Algorithm 3 minimizes〈

DLy (fθ, fθt) + α∇Ly(fθt)
>fθ

〉
(x,y)∈S +R(θ) (9)

approximately through mini-batch SGD. The second term
α∇Ly(fθt)

>fθ pushes the model fθ towards the direction
of reducing loss, and the first term DLy (fθ, fθt) pulls it
back towards the frozen model fθt . With a certain family of
loss functions, (9) can be further transformed as follows.

Proposition 2.2 Let y be a vector representation such as
a K-dim vector representing K classes. Assume that the
gradient of the loss function can be expressed as

∇L(f, y) = ∇Ly(f) = p(f)− y (10)

with p(f) not depending on y. Let

Jt(θ) =
〈
DLy (fθ, fθt) + α∇Ly(fθt)

>fθ
〉
(x,y)∈S (11)

J ′t(θ) =
〈
(1− α)L(fθ, p(fθt)) + αLy(fθ)

〉
(x,y)∈S (12)

Then we have
Jt(θ) = J ′t(θ) + ct ,

where ct is independent of θ. This implies that

arg min
θ

[Jt(θ) +R(θ)] = arg min
θ

[J ′t(θ) +R(θ)] .

Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization

Both the cross-entropy loss and squared loss satisfy (10).
In particular, when Ly(f) is the cross-entropy loss, p(f)
becomes the soft max function. In this case, (12) is the
distillation formula with the frozen model fθt playing the
role of a cumbersome source model, and therefore, the pa-
rameter update rule of Algorithm 3 involving (11) becomes
that of distillation. Thus, Algorithm 3 can be regarded as a
generalization of self-distillation for arbitrary loss functions.

2.3. Convergence Analysis

Let us define α-regularized loss

`α(θ) :=
〈
L (f(θ;x), y)

〉
(x,y)∈S +

1

α
R(θ). (13)

The following theorem shows that Algorithm 1 with step-
size α always approximately reduces the α-regularized loss
if α is appropriately set.

Theorem 2.1 In the setting of Algorithm 1 with m = 1,
assume that there exists β > 0 such that Dh(f, f ′) ≥
βDLy (f, f ′) for any f and f ′, and assume that α ∈ (0, β].
Assume also thatQt(θ) defined in Algorithm 1 is 1/η smooth
in θ: ‖∇Qt(θ)−∇Qt(θ′)‖ ≤ (1/η)‖θ − θ′‖.

Assume that θt+1 is an improvement of θt with respect to
minimizing Qt so that Qt(θt+1) ≤ Qt(θ̃) , where

θ̃ = θt − η∇Qt(θt). (14)

Then we have

`α(θt+1) ≤ `α(θt)−
αη

2
‖∇`α(θt)‖2.

For Algorithm 3, we have h(·) = Ly(·) and thus β = 1,
leading to α ∈ (0, 1]. (14) is the parameter update step of
Algorithm 1 except that the algorithm stochastically esti-
mates the mean over S from a mini-batch B sampled from
S. Therefore, the theorem indicates that each stage (corre-
sponding to t) of the algorithm approximately reduces the
α-regularized loss `α(θ). In other words, while the guide
function changes from stage to stage, a quantity that does
not depend on the guide function goes down throughout
training, namely, the α-regularized loss `α.

Furthermore, we obtain from Theorem 2.1 that

1

T

T−1∑
t=0

‖∇`α(θt)‖2 ≤
2(`α(θ0)− `α(θT))

αηT
.

Assuming `α(θ) ≥ 0, this implies that as T goes to in-
finity, the right-hand side goes to zero, and so Algorithm
3 converges with ∇`α(θT) → 0. Therefore, when T is
sufficiently large, θT finds a stationary point of `α.

The convergence result indicates that having a regularization
term R(θ) in the algorithm effectively causes minimization

of the α-regularized loss. However, our empirical results
(shown later) indicate that GULF models are very different
from standard models trained directly to minimize the α-
regularized loss. For example, standard models trained with
`0.01 suffers from severe underfitting, but GULF model with
α=0.01 produces high performance. This is because each
step of guided learning tries to find a good solution which
is near the previous solution (guidance). The complexity
of each iterate is better controlled, and hence this approach
leads to better generalization performance. We will come
back to this point in the next section.

3. Empirical study
While the proposed framework is general, our empirical
study places a major focus on GULF2 (Algorithm 3) with
the cross-entropy loss, due to its connection to distillation
(Proposition 2.2). In particular, we set up our implemen-
tation so that one instance of GULF2 coincides with self-
distillation to provide empirical insight into it from a func-
tional gradient viewpoint.

First, with the goal of understanding the empirical behavior
of the algorithm, we examine obtained models in reference
to our theoretical findings. We use relatively small neural
networks for this purpose. Next, we study the case of larger
networks with consideration of practicality.

3.1. Implementation

To implement the algorithms presented above, methods of
parameter initialization and optimization need to be con-
sidered. To observe the basic behavior, our strategy in this
work is to keep it as simple as possible.

Initial parameter θ0 As the functions of interest are non-
convex, the outcome depends on the initial parameter θ0.
The most natural (and simplest) choice is random param-
eters. This option is called ‘ini:random’ below. We also
considered two more options. One is to start from a base
model obtained by regular training, called ‘ini:base’. This
option enables study of self-distillation. The other is to start
from a shrunk version of the base model, and details of this
option will be provided later.

Parameter update To update parameter θ by descending
the stochastic gradient, standard techniques can be used such
as momentum, Rmsprop (Tieleman & Hinton, 2012), Adam
(Kingma & Ba, 2015), and so forth. As is the case for regular
training, learning rate scheduling is beneficial. Among many
possibilities, we chose to repeatedly use for each t, the same
method that works well for regular training. For example,
a standard method for CIFAR10 is to use momentum and
decay the learning rate only a few times, and therefore we
use this scheme for each stage on CIFAR10. That is, the
learning rate is reset to the initial rate for each t; however

Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization

Algorithm 4 base-loop (simplified SGDR): Input: θ0, train-
ing set S. Meta-parameter: T . Output: θT .

for t = 0 to T − 1 do
θt+1 ← argminθ

[〈
Ly(f(θ;x))

〉
(x,y)∈S +R(θ)

]
where θ is initialized by θt.

end for

#class train dev. test
CIFAR10 10 49000 1000 10000

CIFAR100 100 49000 1000 10000
SVHN 10 599388 5000 26032

ImageNet 1000 1271167 10000 50000

Table 1. Data. For each dataset, we randomly split the official
training set into a training set and a development set to use the de-
velopment set for meta-parameter tuning. For ImageNet, following
custom, we used the official validation set as our ‘test’ set.

note that θ is not reset. Although this is perhaps not the
best strategy in terms of computational cost, its advantage is
that at the end of each stage, we obtain “clean” intermediate
models with θt that were optimized for intermediate goals.
(If instead, we used one decay schedule from the beginning
to the end, the convergence theorem still holds, but θt would
be noisy when the learning rate is still high.) This strategy
enables to study how a model changes as the guide function
gradually goes ahead, and also relates the method to self-
distillation.

Since θ is not reset when the learning rate is reset, this sched-
ule can be regarded as a simplified fixed-schedule version
of SGD with warm restarts (SGDR) (Loshchilov & Hutter,
2017b). (SGDR instead does sophisticated scheduling with
cosine-shape decay and variable epochs.) For comparison,
we test the same schedule with the standard optimization
objective (‘base-loop’; Algorithm 4).

Enabling study of self-distillation We study classifica-
tion tasks with the standard cross-entropy loss, which sat-
isfies the condition of Proposition 2.2. Combined with the
choice of learning rate scheduling above, GULF2 with the
ini:base option (which initializes θ0 with a trained model)
essentially becomes self-distillation. Thus, one aspect of our
experiments is to study self-distillation from the viewpoint
of functional gradient learning.

3.2. Experimental setup

Table 1 summarizes the data we used. As for network archi-
tectures, we mainly used ResNet (He et al., 2016a;b) and
wide ResNet (WRN) (Zagoruyko & Komodakis, 2016). Fol-
lowing the original work, the regularization term R(θ) was
set to be R(θ) = λ

2 ‖θ‖
2 where λ is the weight decay. We

fixed mini-batch size to 128 and used the same learning rate
decay schedule for all but ImageNet. Due to the page limit,
details are described in the supplementary material. How-
ever, note that the schedule we used for all but ImageNet is

3–4 times longer than those used in the original ResNet or
WRN study for CIFAR datasets. This is because we used
the “train longer” strategy (Loshchilov & Hutter, 2017a),
and accordingly, the base model performance visibly im-
proved from the original work. This, in fact, made it harder
to obtain large performance gains over the base models (not
only for GULF but also for all other tested methods) as the
bar was set higher. We feel that this is more realistic testing
than using the original shorter schedule.

We applied the standard mean/std normalization to images
and used the standard image augmentation. In particular, for
ImageNet, we used the same data augmentation scheme as
used for training the pre-trained models provided as part of
TorchVision, since we used these models as our base model.

The default value of α is 0.3.

1

2

4

0.03 0.3 3

T
es

t
lo

ss
 (

lo
g

-s
ca

le
)

Training loss (log-scale)

random
base
ini:random
ini:base

(a) GULF2

1

2

4

0.03 0.3 3

T
es

t
lo

ss
 (

lo
g

-s
ca

le
)

Training loss (log-scale)

random

base

regular training

(b) Regular training
Figure 1. Test loss in relation to training loss. The arrows indicate
the direction of time flow. CIFAR100. ResNet-28.

3.3. Smooth path

We start with examining training of a relatively small net-
work ResNet-28 (0.4M parameters) on CIFAR100. In this
setting, optimization is fast, and so a relatively large T (the
number of stages) is feasible.

We performed GULF2 training with T=25 starting from
random parameters (ini:random) as well as starting from
a base model obtained by regular training (ini:base). Fig-
ure 1a plots test loss of these two runs in relation to train-
ing loss. Each point represents a model f(θt;x) at time
t = 1, 3, 5, · · · , 25, and the arrows indicate the direction of
time flow. We observe that training proceeds on a smooth
path. ini:random(◦), which starts from random parameters
(�), reduces both training loss and test loss. ini:base(4)
starts from the base model (×) and increases training loss,
but reduces test loss. ini:random and ini:base meet and
complete one smooth path from a random state (�) to the
base model (×). ini:random goes forward on this path
while ini:base goes backward, and importantly, the path
goes through the region where test loss is lower than that
of the base model. The test error plotted against training
loss also forms a U-shape path. Similar U-shape curves
were observed across datasets and network architectures.
The supplementary material shows a test error curve and a
few more examples of test loss curves including a case of

Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization

1

2

4

0.03 0.3 3T
es

t
lo

ss
 (

lo
g
-s

ca
le

)

Training loss (log-scale)

base

random

(a) base-loop (α=1)

1

2

4

0.03 0.3 3T
es

t
lo

ss
 (

lo
g
-s

ca
le

)

Training loss (log-scale)

base

random

(b) α=0.9

1

2

4

0.03 0.3 3T
es

t
lo

ss
 (

lo
g
-s

ca
le

)

Training loss (log-scale)

base

random

(c) α=0.3

1

2

4

0.03 0.3 3T
es

t
lo

ss
 (

lo
g
-s

ca
le

)

Training loss (log-scale)

base

random

(d) α=0.1

1

2

4

0.03 0.3 3T
es

t
lo

ss
 (

lo
g
-s

ca
le

)

Training loss (log-scale)

base

random

(e) α=0.01
Figure 2. Test loss of ini:base(‘4’) and ini:random(‘◦’). with five values of α (becoming smaller from left to right), in relation to training
loss. GULF2. T=25. CIFAR100. ResNet-28. As α becomes smaller, the (potential) meeting point shifts further away from the base
model. The left-most figure shows base-loop, which is equivalent to α=1.

DenseNet (Huang et al., 2017).

In the middle of this path, a number of models with good
generalization performance lie. One might wonder if regular
training also forms such a path. Figure 1b shows that this
is not the case. This figure plots the loss of intermediate
models in the course of regular training so that the i-th point
represents a model after 20K×i steps of mini-batch SGD
with the learning rate being reduced twice. The path of
regular training from random initialization (�) to the final
model (×) is rather bumpy and the test loss generally stays
as high as the final outcome. The bumpiness is due to the
fact that the learning rate is relatively high at the beginning
of training. Comparing Figures 1a and 1b, GULF training
clearly takes a very different path from regular training.

3.4. In relation to the theory

Going forward, going backward It might look puzzling
why ini:base goes backward in the direction of increasing
the training loss. Theorem 2.1 suggests that this is the effect
of the regularization term R(θ), in this case R(θ) = λ

2 ‖θ‖
2

with weight decay λ. The theory indicates that for α ∈
(0, 1], the α-regularized loss

`α(θ) =
〈
Ly(f(θ;x))

〉
(x,y)∈S +R(θ)/α

goes down and eventually converges as GULF2 proceeds.
By contrast, The base model is a result of minimizing〈

Ly(f(θ;x))
〉
(x,y)∈S +R(θ).

As we always set α < 1 (0.3 in this case), i.e., 1/α > 1,
GULF2 prefers smaller parameters than the base model
does. Consequently, when GULF2 (with small α) starts
from the base model (which has low training loss and high
R(θ)), GULF2 is likely to reduce R(θ)/α at the expense of
increasing loss (going backward). When GULF2 starts from
random parameters, whose training loss is high, GULF2
is likely to reduce loss (going forward) at the expense of
increasing R(θ)/α.

Effects of changing α With GULF2, the guide function
f∗ satisfies

f∗ ≈ fθt − α(H (Ly(fθt)))
−1∇Ly(fθt),

thus, α serves as a step-size of functional gradient descent
for reducing loss. The effects of changing α are shown
in Figure 2 with T fixed to 25. The left-most graph is
base-loop, which is equivalent to GULF2 with α=1 in this
implementation. There are three things to note. First, with
a very small step-size α=0.01 (the right most), ini:random
cannot reach far from the random state for T=25. This is a
straightforward effect of a small step size. Second, as step-
size α becomes smaller (from left to right), the (potential)
meeting/convergence point shifts further away from the base
model; the convergence point of ‖θt‖2 also shifts away from
the base model and decreases (supplementary material).
This is the effect of larger R(θ)/α for smaller α. Finally,
with a large step-size (0.9 and 1), the curve flattens and it no
longer goes through the high-performance regions slowly or
smoothly, and the benefit diminishes/vanishes.

α-regularized loss `α(θ) Figure 3a confirms that, as sug-
gested by the theory, `α(θ) goes down and almost converges
as training proceeds. This fact motivates examining stan-
dard models trained with this `α(θ) objective, which we call
base-λ/α models. We found that base-λ/α models do not
perform as well as GULF2 at all. In particular, with a very
small α=0.01, which 100 times tightens regularization, test
error of base-λ/α drastically degrades due to underfitting;
in contrast, ini:base with α=0.01 performs well. Moreover,
base-λ/α models are very different from GULF2 models
with corresponding α even with a moderate α. For exam-
ple, Figure 3b plots the parameter size ‖θt‖2 in relation to
training loss for α=0.3. base-λ/α is clearly far away from
where ini:base and ini:random converge to.

0.25

1

4

16

0 10 20

α
-r

eg
u

la
ri

ze
d

 l
o
ss

t

α=0.01

α=0.1
α=0.3

α=0.9

(a)

0

2

4

6

0.05 0.5 5

1
0

-3
||θ

t||
2

Training loss (log-scale)

ini:base
ini:randombase

random

base-λ/α

(b)
Figure 3. (a)α-regularized loss `α(θ) in relation to time t. GULF2
ini:base. (b) ‖θt‖2 and training loss of base-λ/α in comparison
with GULF2. α=0.3. CIFAR100. ResNet-28.

Benefit of guiding This fact illustrates the merit of guided
learning (including self-distillation). GULF (indirectly and
locally) minimizes the α-regularized loss `α(θ), but it does

Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization

this against the restraining force of pulling the model back
to the current model. This serves as a form of regulariza-
tion. Without such a force, training for, say, `0.01 would
make a big jump to rapidly reduce the parameter size and
end up with a radical solution that suffers severely from
underfitting. This is what happens with base-λ/α. By con-
trast, guided learning finds a more moderate solution with
good generalization performance, and this is the benefit of
extra regularization (in the form of pulling back) provided
through the guide function. The regularization effect of
distillation has been mentioned (Hinton et al., 2014), and
our framework formalizes the notion through the functional
gradient learning viewpoint.

3.5. With smaller networks

Now we review the test error results of using relatively small
networks in Table 2. T for GULF2 and base-loop was fixed
to 25 on CIFAR10/100 and 15 on SVHN. Step-size α was
fixed to 0.3 for ini:random and chosen from { 0.01,0.03 } for
ini:base. GULF2 is consistently better than the base model
(Row 1) and generally better than the three baseline methods
(Row 2–4). The base-λ/α results (Row 2) were obtained
by α=0.3, and they are generally not much different from
the base model. base-loop (Row 3) generally makes small
improvement over the base model, but it generally falls short
of GULF2. A common technique, label smoothing (Row
4) (Szegedy et al., 2016), ‘softens’ labels by taking a small
amount of probability from the correct class and distributing
it equally to the incorrect classes. It generally worked well,
but the improvements were small. That is, the three baseline
methods produced performance gains to some extent, but
their gains are relatively small, and they are not as consistent
as GULF2 across datasets.

ini:random In these experiments, ini:random performed
as well as ini:base. This fact cannot be explained from the
knowledge-transfer viewpoint of distillation, but it can be
explained from our functional gradient learning viewpoint,
as in the previous section.

3.6. With larger networks

The neural networks and the size of images (32×32) used
above are relatively small. We now consider computation-

C10 C100 SVHN
1

baselines

base model 6.42 30.90 1.86 1.64
2 base-λ/α 6.60 30.24 1.78 1.67
3 base-loop 6.20 30.09 1.93 1.53
4 label smooth 6.66 30.52 1.71 1.60
5 GULF2 ini:random 5.91 28.83 1.71 1.53
6 ini:base 5.75 29.12 1.65 1.56

Table 2. Test error (%). Median of 3 runs. Resnet-28 (0.4M
parameters) for CIFAR10/100, and WRN-16-4 (2.7M parameters)
for SVHN. Two numbers for SVHN are without and with dropout.
base-λ/α: weight decay λ/α. base-loop: Algorithm 4.

0.1

0.2

0.4

0.8

1.6

0.0002 0.02 2T
es

t
lo

ss
 (

lo
g

-s
ca

le
)

Training loss (log-scale)

base/2base

random

(a) CIFAR10

0.5

1

2

4

0.002 0.02 0.2 2T
es

t
lo

ss
 (

lo
g

-s
ca

le
)

Training loss (log-scale)

base/2
base

random

(b) CIFAR100

Figure 4. Test loss in relation to training loss. WRN-28-10 on
CIFAR10 and CIFAR100. GULF2. ini:base/2 (‘�’) fills the gap
between ini:random (‘◦’) and ini:base (‘4’).

CIFAR10 CIFAR100
1 base model 3.82 18.55
2 base-λ/α 3.70 27.89
3 base-loop 3.70 18.91
4 lab smooth 4.13 19.44
5 GULF1 3.46 18.14
6 GULF2 3.63 17.95

Table 3. Test error (%) results on CIFAR10 and CIFAR100. WRN-
28-10 (36.5M parameters) without dropout. Median of 3 runs.

ally more expensive cases.

Parameter shrinking ini:random, the most natural op-
tion from the functional gradient learning viewpoint, unfor-
tunately, turned out to be too costly in this large-network
situation. Moreover, in this setting, it is useful to have an
option of starting somewhere between the two end points
(‘random’ and ‘base’) since that is where good models tend
to lie according to our study with small networks. There-
fore, we experimented with ‘rewinding’ a base model by
shrinking its weights and bias of the last fully-connected lin-
ear layer by dividing them with V > 1 (a meta-parameter).
We use these partially-shrunk parameters as the initial pa-
rameter θ0 for GULF. Since doing so shrinks the model
output f(θ0;x) by the factor of V , this is closely related
to temperature scaling, for distillation (Hinton et al., 2014)
and post-training calibration (Guo et al., 2017). Parameter
shrinking is, however, simpler than temperature scaling of
distillation, which scales logits of both models, and fits well
in our framework.

Figure 4 shows training loss (the x-axis) and test loss (the y-
axis) obtained when parameter shrinking is applied to WRN-
28-10 on CIFAR10 and CIFAR100. By shrinking with V =2,
the loss values of the base model change from ‘base’ (×) to
‘base/2’ (+). The location of base/2 is roughly the midpoint
of two end points ‘base’ and ‘random’. ini:base/2 (�), which
starts from the shrunk model, explores the space neither
ini:random nor ini:base can reach in a few stages.

Larger ResNets on CIFAR10 and CIFAR100 Table 3
shows test error of ini:base/2 using WRN-28-10 on CI-
FAR10/100. T was fixed to 1. Compared with the base
model, both GULF1 and 2 consistently improved perfor-
mance, while the baseline methods mostly failed to make

Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization

improvements. GULF1 and 2 produced similar perfor-
mances. This is the best WRN non-ensemble results on
CIFAR10/100 among the self-distillation related studies
that we are aware of.

ImageNet To test further scale-up, we experimented with
ResNet-50 (25.6M parameters) and WRN50-2 (68.9M pa-
rameters) on the ILSVRC-2012 ImageNet dataset. As Im-
ageNet training is resource-consuming, we only tested se-
lected configurations, which are GULF2 with ini:base and
ini:base/2 options. In these experiments, α was set to 0.5,
but partial results suggested that 0.3 works well too. We
used models pre-trained on ImageNet provided as part of
TorchVision1 as the base models. Table 4 shows that GULF2
consistently improves error rates over the base model. The
best-performing ini:base/2 achieved lower error rates than a
twice deeper counterpart of each network, ResNet-101 for
ResNet-50 and WRN-101-2 for WRN-50-2 trained in a stan-
dard way (Rows 11–12). Thus, we confirmed that GULF2
scales up and brings performance gains on ImageNet. To
our knowledge, this is one of the largest-scale ImageNet
experiments among the self-distillation related studies.

methods Resnet-50 WRN50-2
1 base model 23.87 7.14 21.53 5.91
2

base-loop
t=1 23.73 6.95 21.99 6.11

3 t=2 23.50 6.93 –
4 t=3 23.36 6.78 –
5

ini:base
t=1 22.79 6.43 21.17 5.65

6 t=2 22.49 6.27 –
7 t=3 22.31 6.28
8

ini:base/2
t=1 22.50 6.25 20.69 5.35

9 t=2 22.31 6.18 –
10 t=3 22.08 6.10 –
11 Resnet-101† 22.63 6.44 –
12 WRN-101-2† – 21.16 5.72

Table 4. ImageNet 224×224 single-crop results on the validation
set. GULF2. top-1 and top-5 errors (%).
† The ResNet-101 and WRN-101-2 performances are from the
description of the pre-trained torchvision models.

Additional experiments on text Finally, the experiments
in this section used image data. Additional experiments
using text data are presented in the supplementary material.

4. Discussion
Guided exploration of landscape GULF is an in-
formed/guided exploration of the loss landscape, where
the guidance is successively given as interim goals set in the
neighborhood of the model at the time, and such guidance
is provided by gradient descent in a function space. Another
view of this process is an accumulation of successive greedy
optimization. Instead of searching the entire space for the
ultimate goal of loss minimization at once, guided learning

1https://pytorch.org/docs/stable/torchvision/models.html

proceeds with repeating a local search, which limits the
space to be searched and leads to better generalization. Its
benefit is analogous to that of ε-boosting.

GULF1 GULF2 uses the second-order information of loss
in the functional gradient step for generating the guide func-
tion, and GULF1 does not. GULF2’s update rule is equiv-
alent to that of distillation, and GULF1’s is not. GULF1
also differs from the logit least square fitting version of
distillation. In our experiments (though limited due to our
focus on self-distillation study), GULF1 performed as well
as GULF2. If this is a general trend, this indicates that in-
clusion of the second-order information is not particularly
helpful. If so, this could be because the second-order infor-
mation is useful for accelerating optimization, but we would
like to proceed slowly to obtain better generalization perfor-
mance. This motivates further investigation of GULF1 as
well as other instantiations of the framework.

Computational cost From a practical viewpoint, a short-
coming of the particular setup tested here (but not the gen-
eral framework of GULF) is computational cost. Since we
used the same learning rate scheduling as regular training
in each stage, GULF training with T stages took more than
T times longer than regular training. It is conceivable that
training in each stage can be shortened without hurting per-
formance since optimization should be easier as a results
of aiming at a nearby goal. Schemes that decay the learn-
ing rate throughout the training without restarts or hybrid
approaches might also be beneficial for reducing computa-
tion. Note that Theorem 2.1 does not require each stage to
be performed to the optimum. On the other hand, testing
(i.e., making predictions) of the models trained with GULF
only requires the same cost as regular models. As shown
in the ImageNet experiments, a model trained with GULF
could perform better than a much larger (and so slow-to-
predict) model; in that case, GULF can save the overall
computational cost since the cost for making predictions
can be significant for practical purposes.

Relation to other methods The proposed method seeks
to improve generalization performances in a principled way
that limits the searched parameter space. The relation to
existing methods for similar purposes is at least two-fold.
First, we view that this work gives theoretical insight into
related methods such as self-distillation and label smooth-
ing, which we hope can be used to improve them. Second,
methods derived from this framework can be used with ex-
isting techniques that are based on different principles (e.g.,
weight decay and dropout) for further improvements.

Distillation Due to the connection discussed above, our
theoretical and empirical analyses of GULF2 provide a
new functional gradient view of distillation. Here we dis-
cuss a few self-distillation studies from this new viewpoint.
(Furlanello et al., 2018) showed that iterative self-distillation

Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization

improves performance over the base model. They set α to 0
(in our terminology) and reported that there were no perfor-
mance gains on CIFAR10. According to our theory, when α
goes to 0, the quantity reduced throughout the process is not
the α-regularized loss but merely R(θ). Such an extreme
setting might be risky. In deep mutual learning (Zhang
et al., 2018), multiple models are simultaneously trained by
reducing loss and aligning each other’s model output. They
were surprised by the fact that ‘no prior powerful teacher’
was necessary. This fact can be explained by our functional
gradient view by relating their approach to our ini:random.
Finally, the regularization effect of distillation has been no-
ticed (Hinton et al., 2014). Our framework formalized the
notion through the functional gradient learning viewpoint.

5. Conclusion
This paper introduces a new framework for guided learning
of nonconvex models through successive functional gradi-
ent optimization. A convergence analysis is established
for the proposed approach, and it is shown that our frame-
work generalizes the popular self-distillation method. Since
the guided learning approach learns nonconvex models in
restricted search spaces, we obtain better generalization
performance than standard training techniques.

Acknowledgements
We thank Professor Cun-Hui Zhang for his support of this
research.

References
Anil, R., Pereyra, G., Passos, A., Ormandi, R., Dahl, G. E.,

and Hinton, G. E. Large scale distributed neural network
training through online distillation. In Proceedings of
International Conference on Machine Learning (ICML),
2018.

Bubeck, S. Convex optimization: Algorithms and com-
plexity. Foundations and Trends in Machine Learning, 8:
231–358, 2015.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT), 2019.

Friedman, J. H. Greedy function approximation: a gradient
boosting machine. Ann. Statist., 29(5):1189–1232, 2001.
ISSN 0090-5364.

Furlanello, T., Lipton, Z. C., Tsehannen, M., Itti, L., and
Anandkumar, A. Born-again neural networks. In Proceed-

ings of International Conference on Machine Learning
(ICML), 2018.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In Proceedings of
International Conference on Machine Learning (ICML),
2017.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of International
Conference on Computer Vision (ICCV), 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In Proceedings of European
Conference on Computer Vision (ECCV), 2016b.

Hinton, G., Vinyals, O., and Dean, J. Distilling the knowl-
edge in a neural network. In Proceedings of Deep Learn-
ing and Representation Learning Workshop: NIPS 2014,
2014.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition (CVPR), 2017.

Johnson, R. and Zhang, T. Deep pyramid convolutional
neural networks for text categorization. In Proceedings
of the 57th Annual Meeting of the Association for Com-
putational Linguistics (ACL), 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Proceedings of International Conference
on Learning Representations (ICLR), 2015.

Lan, X., Zhu, X., and Gong, S. Knowledge distillation by
on-the-fly native ensemble. In Adances in Neural Infor-
mation Processing Systems 31 (NeurIPS 2018), 2018.

Loshchilov, I. and Hutter, F. Train longer, generalize better:
closing the generalization gap in large batch training of
neural networks. In Advances in Neural Information Pro-
cessing Systems 30 (NIPS 2017), pp. 1731–1741, 2017a.

Loshchilov, I. and Hutter, F. SGDR: Stochastic gradient de-
scent with warm restarts. In Proceedings of International
Conference on Learning Representations (ICLR), 2017b.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., , and
Wojna, Z. Rethinking the inception architecture for com-
puter vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition (CVPR), pp.
2818–2826, 2016.

Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization

Tarvainen, A. and Valpola, H. Mean teachers are better role
models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In Adances in
Neural Information Processing Systems 30 (NIPS 2017),
2017.

Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural Networks for Machine Learning, 4,
2012.

Xie, Q., Dai, Z., Hovy, E., Luong, M.-T., and Le, Q. V.
Unsupervised data augmentation for consistency training.
arXiv:1904.12848, 2019.

Xu, T.-B. and Liu, C.-L. Data-distortion guided self-
distillation for deep neural networks. In Proceedings
of The 33rd AAAI Conference on Artificial Intelligence),
2019.

Yang, C., Xie, L., Qiao, S., and Yuille, A. Training deep
neural networks in generations: A more tolerant teacher
educates better students. In Proceedings of AAAI 2019,
2019a.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.,
and Le, Q. V. XLNet: Generalized autoregressive pre-
training for language understanding. In Adances in Neu-
ral Information Processing Systems 32 (NeurIPS 2019),
2019b.

Yim, J., Joo, D., Bae, J., and Kim, J. A gift from knowledge
distillation: Fast optimization, network minimization and
transfer learning. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
In Proceedings of the British Machine Vision Conference
(BMVC), 2016.

Zhang, X., Zhao, J., and LeCun, Y. Character-level convo-
lutional networks for text classification. In Advances in
Neural Information Processing Systems 28 (NIPS 2015),
2015.

Zhang, Y., Xiang, T., Hospedales, T. M., and Lu, H. Deep
mutual learning. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition (CVPR),
2018.

Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization

A. Proofs
In the proofs, we use abbreviated notation by dropping x and y and making θ a subscript, e.g., we write fθ for f(θ;x).

A.1. Proof of Proposition 2.1

Proposition 2.1 When h(p) = Ly(p) that returns loss given prediction p, Algorithm 1 with α = γ is equivalent to
Algorithm 3 with α = 1− (1− γ)m.

Proof From Algorithm 1 with α = γ, we have

f∗i = arg min
q

[
Dh(q, f∗i−1) + γ∇Ly(f∗i−1)>q

]
. (15)

From h(·) = Ly(·) and (15), we obtain

∇Ly(f∗i) = ∇Ly(f∗i−1)− γ∇Ly(f∗i−1) = (1− γ)∇Ly(f∗i−1) for i = 1, · · · ,m.

Since f∗0 = fθt , we have

∇Ly(f∗m) = (1− γ)m∇Ly(f∗0) = (1− γ)m∇Ly(fθt),

which implies

∇fθ [Dh(fθ, f
∗
m)] = ∇Ly(fθ)−∇Ly(f∗m) = ∇Ly(fθ)− (1− γ)m∇Ly(fθt)

= ∇fθ
[
DLy (fθ, fθt) + (1− (1− γ)m)∇Ly(fθt)

>fθ
]

and therefore, ∇θ [Dh(fθ, f
∗
m)] = ∇θ

[
DLy (fθ, fθt) + (1− (1− γ)m)∇Ly(fθt)

>fθ
]
. The rest is trivial.

A.2. Proof of Proposition 2.2

Proposition 2.2 Let y be a vector representation such as a K-dim vector representing K classes. Assume that the gradient
of the loss function can be expressed as

∇L(f, y) = ∇Ly(f) = p(f)− y

with p(f) not depending on y. Let

Jt(θ) =
〈
DLy (fθ, fθt) + α∇Ly(fθt)

>fθ
〉
(x,y)∈S

J ′t(θ) =
〈
(1− α)L(fθ, p(fθt)) + αLy(fθ)

〉
(x,y)∈S

Then we have
Jt(θ) = J ′t(θ) + ct,

where ct is independent of θ. This implies that

arg min
θ

[Jt(θ) +R(θ)] = arg min
θ

[J ′t(θ) +R(θ)] .

Proof

∇fθ
[
DLy (fθ, fθt) + α∇Ly(fθt)

>fθ
]

= ∇Ly(fθ)− (1− α)∇Ly(fθt)

= (p(fθ)− y)− (1− α)(p(fθt)− y)

= (1− α)(p(fθ)− p(fθt)) + α(p(fθ)− y)

= ∇fθ [(1− α)L(fθ, p(fθt)) + αLy(fθ)] .

This implies that∇Jt(θ) = ∇J ′t(θ). Therefore Jt(θ)− J ′t(θ) is independent of θ.

Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization

A.3. Proof of Theorem 2.1

Theorem 2.1 In the setting of Algorithm 1 withm = 1, assume that there exists β > 0 such thatDh(f, f ′) ≥ βDLy (f, f ′)
for any f and f ′, and assume that α ∈ (0, β]. Assume also that Qt(θ) defined in Algorithm 1 is 1/η smooth in θ:

‖∇Qt(θ)−∇Qt(θ′)‖ ≤ (1/η)‖θ − θ′‖.

Assume that θt+1 is an improvement of θt with respect to minimizing Qt so that

Qt(θt+1) ≤ Qt(θ̃),

where

θ̃ = θt − η∇Qt(θt).

Then we have
`α(θt+1) ≤ `α(θt)−

αη

2
‖∇`α(θt)‖2.

Proof

We first define Q̃t(θ) as follows:

Q̃t(θ) :=
〈
Dh(fθ, fθt) + α∇Ly(fθt)

>fθ
〉
(x,y)∈S +R(θ).

We can check thatQt(θ)−Q̃t(θ) is independent of θ. Therefore optimizing θ with respect toQt(θ) is the same as optimizing
θ with respect to Q̃t(θ), and ∇Qt(θ) = ∇Q̃t(θ).

The smoothness assumption implies that

Q̃t(θ −∆θ) ≤ Q̃t(θ)−∇Qt(θ)>∆θ +
1

2η
‖∆θ‖2.

Therefore

Q̃t(θt+1) ≤Q̃t(θ̃) = Q̃t(θt − η∇Qt(θt))

≤Q̃t(θt)− η‖∇Qt(θt)‖2 +
1

2η
‖η∇Qt(θt)‖2

=Q̃t(θt)−
η

2
‖∇Qt(θt)‖2.

Note also that

Q̃t(θt+1)− Q̃t(θt) ≥
〈
βDLy (fθt+1 , fθt) + α∇Ly(fθt)

>(fθt+1 − fθt)
〉
(x,y)∈S + [R(θt+1)−R(θt)]

=
〈
(β − α)DLy (fθt+1 , fθt) + αLy(fθt+1)− αLy(fθt)

〉
(x,y)∈S + [R(θt+1)−R(θt)]

≥
〈
αLy(fθt+1)− αLy(fθt)

〉
(x,y)∈S + [R(θt+1)−R(θt)]

=α`α(θt+1)− α`α(θt).

The second inequality is due to the non-negativity of the Bregman divergence.

By combining the two inequalities, we obtain

α`α(θt+1) ≤ α`α(θt)−
η

2
‖∇Qt(θt)‖2.

Now, observe that ∇Qt(θt) = ∇Q̃t(θt) = α∇`α(θt), and we obtain the desired bound.

Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization

B. On the Empirical Study
In this section, we first provide experimental details and additional figures regarding the experiments reported in the
main paper, and then we report additional experiments using text data. Our code is provided at a repository under
github.com/riejohnson.

B.1. Details of the experiments in the main paper

B.1.1. CIFAR10, CIFAR100, AND SVHN

This section describes the experimental details of all but the ImageNet experiments.

The mini-batch size was set to 128. We used momentum 0.9. The following learning rate scheduling was used: 200K steps
with η, 40K steps with 0.1η, and 40K steps with 0.01η. The initial learning rate η was set to 0.1 on CIFAR10/100 and
0.01 on SVHN, following (Zagoruyko & Komodakis, 2016). The weight decay λ was 0.0001 except that it was 0.0005 for
(CIFAR100, WRN-28-10) and SVHN.

We used the standard mean/std normalization on all and the standard shift and horizontal flip image augmentation on
CIFAR10/100.

We report the median of three runs with three random seeds. The meta-parameters were chosen based on the performance
on the development set. All the results were obtained by using only the ‘train’ portion (shown in Table 1 of the main paper)
of the official training set as training data.

For label smoothing, the amount of probability taken away from the true class was chosen from {0.1, 0.2, 0.3, 0.4}.

To obtain the results reported in Table 2 (with smaller networks), T was fixed to 25 for CIFAR10/100, and 15 for SVHN. α
for ini:random was fixed to 0.3. For ini:base, we chose α from {0.3, 0.01}. We excluded α = 0.01 for ini:random, as it
takes too long. When dropout was applied in the SVHN experiments, the dropout rate was set to 0.4, following (Zagoruyko
& Komodakis, 2016). To obtain the results reported in Table 3 (with larger networks), T was fixed to 1. For GULF2, α
was chosen from {0.3, 0.01}. For GULF1, α was fixed to 0.3, and m (the number of functional gradient steps) was chosen
from {1, 2, 5}. On CIFAR datasets, the choice of α or m did not make much difference, and the chosen values tended to
vary among the random seeds. On SVHN, α=0.01 tended to be better when no dropout was used, and 0.3 was better when
dropout was used.

To perform random initialization of the parameter for ini:random and the baseline methods, we used Kaiming normal
initialization (He et al., 2015), following the previous work.

B.1.2. IMAGENET

Each stage of the training for ImageNet followed the code used for training the pre-trained models provided as part of
TorchVision: https://github.com/pytorch/examples/blob/master/imagenet/main.py. That is, for
both ResNet-50 and WRN-50-2, the learning rate was set to η, 0.1η, and 0.01η for 30 epochs each, i.e., 90 epochs in total,
and the initial rate η was set to 0.1. The mini-batch size was set to 256, and the weight decay was set to 0.0001. The
momentum was 0.9. α was fixed to 0.5. We used two GPUs for ResNet-50 and four GPUs for WRN-50-2.

We used the standard mean/std normalization and the standard image augmentation for ImageNet – random resizing,
cropping and horizontal flip, which is the same data augmentation scheme as used for training the pre-trained models
provided as part of TorchVision.

Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization

B.2. Additional figures

Figure 5 shows test error (%) in relation to training loss with a small ResNet on CIFAR100. Additional examples of test-loss
curves are shown in Figure 6. Figure 7 shows the parameter size ‖θt‖2 in relation to training loss, in the settings of Figure 2
in the main paper.

25

30

35

40

0.03 0.3

T
es

t
er

ro
r

(%
)

Training loss (log-scale)

regular training

ini:base

ini:random

Figure 5. Test error (%) in relation to training loss. The arrows indicate the direction of time flow. GULF2. CIFAR100. ResNet-28.

0.15

0.2

0.25

0.3

0.35

0.001 0.01 0.1

T
es

t
lo

ss

Training loss (log-scale)

ini:base
ini:random

base
close-up

(a) CIFAR10, ResNet-28

0.06

0.08

0.1

0.12

0.01 0.02 0.04 0.08

T
es

t
lo

ss

Training loss (log-scale)

ini:base
ini:random

base

close-up

(b) SVHN, WRN-16-4.

0.2

0.4

0.8

1.6

0.005 0.5T
es

t
lo

ss
 (

lo
g

-s
ca

le
)

Training loss (log-scale)

ini:base

ini:random

base

random

(c) CIFAR10,DenseNetBC-40-12.
Figure 6. Additional examples of test loss curves of GULF2. The arrows indicate the direction of time flow.

0

2

4

6

0.03 0.3 3

1
0

-3
||θ

t||
2

Training loss (log-scale)

base

random

(a) base-loop (α=1)

0

2

4

6

0.03 0.3 3

1
0

-3
||θ

t
||2

Training loss (log-scale)

base

random

(b) α=0.9

0

2

4

6

0.03 0.3 3

1
0

-3
||θ

t||
2

Training loss (log-scale)

base

random

(c) α=0.3

0

2

4

6

0.03 0.3 3

1
0

-3
||θ

t
||2

Training loss (log-scale)

base

random

(d) α=0.1

0

2

4

6

0.03 0.3 3

1
0

-3
||θ

t
||2

Training loss (log-scale)

base

random

(e) α=0.01

Figure 7. Parameter size ‖θt‖2 of ini:base(‘4’) and ini:random(‘◦’). with five values of α (becoming smaller from left to right), in
relation to training loss. GULF2. T=25. CIFAR100. ResNet-28. Matching figures with Figure 2. As α becomes smaller, the (potential)
meeting point shifts further away from the base model. The left-most figure is base-loop, which is equivalent to α=1. The arrows indicate
the direction of time flow.

B.3. Additional experiments on text data

We tested GULF on sentiment classification to predict whether reviews are positive or negative, using the polarized Yelp
dataset (#train: 560K, #test: 38K) (Zhang et al., 2015). The best-performing models on this task are transformers pre-trained
with language modeling on large and general text data such as Bert (Devlin et al., 2019) and XLnet (Yang et al., 2019b).
However, these models are generally large and time-consuming to train using a GPU (i.e., without TPUs used in the original
work). Therefore, instead, we used the deep pyramid convolutional neural network (DPCNN) (Johnson & Zhang, 2017) as
our base model. In these experiments, we used GULF2.

Table 5 shows the test error results in five settings. The last three use relatively small training sets of 45K data points and
validation sets of 5K data points, randomly chosen from the original training set, while the first two use the entire training
set (560K data points) except for 5K data points held out for validation (meta-parameter tuning). DPCNNs optionally
take additional features produced by embeddings of text regions that are trained with unlabeled data, similar to language
modeling. Cases 1 and 3 exploited this option, training embeddings using the entire training set as unlabeled data; B.3.1
below provides the details. As in the image experiments, we used the cross entropy loss with softmax except for Case 5,
where the quadratic hinge loss Ly(f) = max(0, 1−yf)2 for y ∈ {−1, 1} was used. This serves as an example of extending

Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization

Case# 1 2 3 4 5
Data large-Yelp small-Yelp

Embedding learning? Yes No Yes No
Loss function cross-entropy †

baselines
base model 2.81 2.98 3.80 5.43 5.32
base-loop 2.63 2.88 3.90 5.43 5.34
w/ dropout 2.70 2.95 3.90 5.34 5.35

GULF
ini:random 2.34 2.72 3.70 5.06 5.00

ini:base 2.38 2.70 3.77 5.15 4.98
ini:base/2 2.43 2.74 3.73 4.99 4.96

Table 5. Test error (%) on sentiment classification. Median of 3 runs. 7-block 250-dim DPCNN (10M parameters). † Squared hinge loss.

self-distillation (formulated specifically with the cross-entropy loss) to general loss functions.

In all the five settings, GULF achieves better test errors than the baseline methods, which shows the effectiveness of our
approach in these settings. On this task, dropout turned out to be not very effective, which is, however, a reminder that the
effectiveness of regularization methods can be data-dependent in general.

Case# 1 2
LM-like prep? Runtime Text for
Yes No (sec/K) prep (GB)

(J & Z, 2017) DPCNN 2.64 3.30 0.1 0.4

This work Table 5 best 2.34 2.70 0.1 0.4
Ensemble 2.18 2.46 0.9 0.4

(Devlin et al., 2019) Bert base 2.25 6.19 5.7 13
Bert large 1.89 – 17.9 13

(Yang et al., 2019b) XLnet base 1.92 4.51 17.2 13
XLnet large 1.55 – 40.5 126

Table 6. GULF ensemble results on Yelp in comparison with previous models. Test error (%) with or without embedding learning
(DPCNN) or language modeling-based pre-training (Bert and XLnet), respectively, corresponding to Cases 1 & 2 of Table 5. Runtime:
real time in seconds for labeling 1K instances using a single GPU with 11GB device memory, measured in the setting of Case 1; the
average of 3 runs. The last column shows amounts of text data in giga bytes used for pre-training or embedding learning in Case 1.
The test errors in italics were copied from the respective publications except that the Bert-large test error is from (Xie et al., 2019); other
test errors and runtime were obtained by our experiments. Our ensemble test error results are in bold.

It is known that performance can be improved by making an ensemble of models from different stages of self-distillation,
e.g., (Furlanello et al., 2018). In Table 6, we report ensemble performances of DPCNNs trained with GULF, in comparison
with the previous best models. Test errors with and without embedding learning (or language modeling-based pre-training
for Bert and XLnet) are shown, corresponding to Cases 1 and 2 in Table 5. The ensemble results were obtained by adding
after applying softmax the output values of 20 DPCNNs (or 10 in Case 2) of last 5 stages of GULF training with different
training options; details are provided in B.3.1.

With embedding learning, the ensemble of DPCNNs trained with GULF achieved test error 2.18%, which slightly beats
2.25% of pre-trained Bert-base, while testing (i.e., making predictions) of this ensemble is more than 6 times faster than Bert-
base, as shown in the ‘Runtime’ column. (Note, however, that runtime depends on implementation and hardware/software
configurations.) That is, using GULF, we were able to obtain a classifier that is as accurate as and much faster than a
pre-trained transformer.

(Yang et al., 2019b) and (Xie et al., 2019) report 1.55% and 1.89% using a pre-trained large transformer, XLnet-large and
Bert-large, respectively. We observe that the runtime and the amounts of text used for pre-training (the last two columns)
indicate that their high accuracies come with steep cost at every step: pre-training, fine-tuning, and testing. Compared with
them, an ensemble of GULF-trained DPCNNs is a much lighter-weight solution with an appreciable accuracy. Also, our
ensemble without embedding learning outperforms Bert-base and XLnet-base without pre-training, with relatively large
differences (Case 2). A few attempts of training Bert-large and XLnet-large from scratch also resulted in underperforming
DPCNNs, but we omit the results as we found it infeasible to complete meta-parameter tuning in reasonable time.

On the other hand, it is plausible that the accuracy of the high-performance pre-trained transformers can be further improved
by applying GULF to their fine-tuning, which would further push the state of the art. Though currently precluded by our
computational constraints, this may be worth investigating in the future.

Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization

B.3.1. DETAILS OF THE TEXT EXPERIMENTS

Embedding learning It was shown in (Johnson & Zhang, 2017) that classification accuracy can be improved by training
an embedding of small text regions (e.g., 3 consecutive words) for predicting neighboring text regions (‘target regions’) on
unlabeled data (similar to language modeling) and then using the learned embedding function to produce additional features
for the classifier. In this work, we trained the following two types of models with respect to use of embedding learning.

• Type-0 did not use any additional features from embedding learning.

• Type-1 used additional features from the following two types of embedding simultaneously:

– the embedding of 3-word regions as a function of a bag of words to a 250-dim vector, and
– the embedding of 5-word regions as a function of a bag of word {1,2,3}-grams to a 250-dim vector.

Embedding training was done using the entire training set (560K reviews, 391MB) as unlabeled data disregarding the labels.

It is worth mentioning that our implementation of embedding learning differs from the original DPCNN work (Johnson &
Zhang, 2017), as a result of pursuing an efficient implementation in pyTorch (the original implementation was in C++). The
original work used the bag-of-word representation for target regions (to be predicted) and minimized squared error with
negative sampling. In this work we minimized the log loss without sampling where the target probability was set by equally
distributing the probability mass among the words in the target regions.

Table 5 Optimization was done by SGD. The learning rate scheduling of the base model and each stage of base-loop and
GULF was fixed to 9 epochs with the initial learning rate η followed by 1 epoch with 0.1η. The mini-batch size was 32 for
small training data and 128 for large training data. We chose the weight decay parameter from {1e-4, 2e-4, 5e-4, 1e-3} and
the initial learning rate from {0.25, 0.1, 0.05}, using the validation data, except that for GULF on the large training data, we
simply used the values chosen for the base model, which were weight decay 1e-4 and learning rate 0.1 (with embedding
learning) and 0.25 (without embedding learning).

For GULF, we chose the number of stages T from {1,2,. . . ,25} and α from {0.3, 0.5}, using the validation data. α = 0.5
was chosen in most cases.

Table 6 The ensemble performances were obtained by combining

• 20 DPCNNs (T ∈ {21, 22, . . . , 25} × {ini:random, ini:base} × {Type-0, Type-1}) in Case 1, and

• 10 DPCNNs (T ∈ {21, 22, . . . , 25} × {ini:random, ini:base} × {Type-0}) in Case 2.

To make an ensemble, the model output values were added after softmax.

Transformers The Bert and XLnet experiments were done using HuggingFace’s Transformers2 in pyTorch. Following
the original work, optimization was done by Adam with linear decay of learning rate. For enabling and speeding up
training using a GPU, we combined the techniques of gradient accumulation and variable-sized mini-batches (for improving
parallelization) so that weights were updated after obtaining the gradients from approximately 128 data points. 128 was
chosen, following the original work. To measure runtime of transformer testing, we used variable-sized mini-batches for
speed-up by improving the parallelism on a GPU.

2https://huggingface.co/transformers/

