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Abstract

We consider a general form of transductive learning on graphs with Laplacian
regularization, and derive margin-based generalization bounds using appropriate
geometric properties of the graph. We use this analysis to obtain a better under-
standing of the role of normalization of the graph Laplacianmatrix as well as the
effect of dimension reduction. The results suggest a limitation of the standard
degree-based normalization. We propose a remedy from our analysis and demon-
strate empirically that the remedy leads to improved classification performance.

1 Introduction

In graph-based methods, one often constructssimilarity graphsby linking similar data points that are
close in the feature space. It was proposed in [3] that one mayfirst project these data points into the
eigenspace corresponding to the largest eigenvalues of a normalized adjacency matrix of the graph
and then use the standardk-means method for clustering. In the ideal case, points in the same class
will be mapped into a single point in the reduced eigenspace,while points in different classes will be
mapped to different points. One may also consider similar ideas in semi-supervised learning using a
discriminative kernel method. If the underlying kernel is induced from the graph, one may formulate
semi-supervised learning directly on the graph (e.g., [1, 5, 7, 8]). In these studies, the kernel is in-
duced from the adjacency matrixW whose(i, j)-entry is the weight of edge(i, j). W is sometimes
normalized byD−1/2WD−1/2 [2, 4, 3, 7] whereD is a diagonal matrix whose(j, j)-entry is the
degree of thej-th node, but sometimes not [1, 8]. Although such normalization may significantly
affect the performance, the issue has not been studied from the learning theory perspective. The
relationship of kernel design and graph learning was investigated in [6], which argued that quadratic
regularization-based graph learning can be regarded as kernel design. However, normalization of
W was not considered there. The goal of this paper is to providesome learning theoretical insight
into the role of normalization of the graph Laplacian matrix(D− W). We first present a model for
transductive learning on graphs and develop a margin analysis for multi-class graph learning. Based
on this, we analyze the performance of Laplacian regularization-based graph learning in relation to
graph properties. We use this analysis to obtain a better understanding of the role of normalization
of the graph Laplacian matrix as well as dimension reductionin graph learning. The results indicate
a limitation of the commonly practiced degree-based normalization mentioned above. We propose
a learning theoretical remedy based on our analysis and use experiments to demonstrate that the
remedy leads to improved classification performance.

2 Transductive Learning Model

We consider the following multi-category transductive learning model defined on a graph. LetV =
{v1, . . . , vm} be a set ofm nodes, and letY be a set ofK possible output values. Assume that
each nodevj is associated with an output valueyj ∈ Y, which we are interested in predicting. We
randomly draw a set ofn indicesZn = {ji : 1 ≤ i ≤ n} from {1, . . . , m} uniformly and without



replacement. We then manually label then nodesvji
with labelsyji

∈ Y, and then automatically
label the remainingm − n nodes. The goal is to estimate the labels on the remainingm − n nodes
as accurately as possible. We encode the labelyj into a vector inRK , so that the problem becomes
that of generating an estimation vectorfj,· = [fj,1, . . . , fj,K ] ∈ RK , which can then be used to
recover the labelyj. In multi-category classification withK classesY = {1, . . . , K}, we encode
eachyj = k ∈ Y asek ∈ RK , whereek is a vector of zero entries except for thek-th entry being
one. Givenfj,· = [fj,1, . . . , fj,K ] ∈ RK (which is intended to approximateeyj

), we decode the
corresponding label estimation̂yj as: ŷj = arg maxk {fj,k : k = 1, . . . , K}. If the true label is
yj , then the classification error iserr(fj,·, yj) = I(ŷj 6= yj), where we useI(·) to denote the set
indicator function.

In order to estimatef = [fj,k] ∈ RmK from only a subset of labeled nodes, we consider for a
given kernel matrixK ∈ Rm, the quadratic regularizationfTQKf =

∑K
k=1 fT

·,kK
−1f·,k, where

f·,k = [f1,k, . . . , fm,k] ∈ Rm. We assume thatK is full-rank. We will consider the kernel matrix
induced by the graph Laplacian, to be introduced later in thepaper. Note that the bold symbolK
denotes the kernel matrix, and regularK denotes the number of classes.

Given a vectorf ∈ RmK , the accuracy of its componentfj,· = [fj,1, . . . , fj,K ] ∈ RK is measured
by a loss functionφ(fj,·, yj). Our learning method attempts to minimize the empirical risk on the
setZn of n labeled training nodes, subject tofTQKf being small:

f̂(Zn) = arg min
f∈RmK





1

n

∑

j∈Zn

φ(fj,·, yj) + λfTQKf



 . (1)

whereλ > 0 is an appropriately chosen regularization parameter.

In this paper, we focus on a special class of loss function that is of the form φ(fj,·, yj) =
∑K

k=1 φ0(fj,k, δk,yj
), whereδa,b is the delta function defined as:δa,b = 1 whena = b andδa,b = 0

otherwise. We are interested in the generalization behavior of (1) compared to a properly defined
optimal regularized risk, often referred to as “oracle inequalities” in the learning theory literature.

Theorem 1 Letφ(fj,·, yj) =
∑K

k=1 φ0(fj,k, δk,yj
) in (1). Assume that there exist positive constants

a, b, andc such that: (i)φ0(x, y) is non-negative and convex inx, (ii) φ0(x, y) is Lipschitz with
constantb whenφ0(x, y) ≤ a, and (iii) c = inf{x : φ0(x, 1) ≤ a} − sup{x : φ0(x, 0) ≤ a}.
Then∀p > 0, the expected generalization error of the learning method (1) over the random training
samplesZn can be bounded by:

EZn

1
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X
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err(f̂j,·(Zn), yj) ≤
1

a
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f∈RmK
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φ0(fj,·, yj) + λf
T
QKf
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�
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,

whereZ̄n = {1, . . . , m} − Zn, trp(K) =
(

1
m

∑m
j=1 K

p
j,j

)1/p

, andKj,j is the(j, j)-entry ofK.

Proof. The proof is similar to the proof of a related bound for binary-classification in [6]. We shall
introduce the following notation. letin+1 6= i1, . . . , in be an integer randomly drawn from̄Zn, and
let Zn+1 = Zn ∪ {in+1}. Let f̂(Zn+1) be the semi-supervised learning method (1) using training

data inZn+1: f̂(Zn+1) = arg inff∈RmK

[

1
n

∑

j∈Zn+1
φ(fj,·, Yj) + λfTQKf

]

. Adapted from a

related lemma used in [6] for proving a similar result, we have the following inequality for each
k = 1, . . . , K:

|f̂in+1,k(Zn+1) − f̂in+1,k(Zn)| ≤ |∇1,kφ(f̂in+1,·(Zn+1), Yin+1
)|Kin+1,in+1

/(2λn), (2)

where ∇1,kφ(fi,·, y) denotes a sub-gradient ofφ(fi,·, y) with respect tofi,k, where fi,· =
[fi,1, . . . , fi,K ]. Next we prove

err(f̂in+1,·(Zn), yin+1
) ≤ sup

k=k0,in+1

[

1

a
φ0(f̂in+1,k(Zn+1), δin+1,k) +

(

b

cλn
Kin+1,in+1

)p]

. (3)

In fact, if f̂(Zn) does not make an error on thein+1-th example, then the inequality automatically
holds. Otherwise, assume thatf̂(Zn) makes an error on thein+1-th example, then there existsk0 6=



yin+1
such thatf̂in+1,yin+1

(Zn) ≤ f̂in+1,k0
(Zn). If we let d = (inf{x : φ0(x, 1) ≤ a} + sup{x :

φ0(x, 0) ≤ a})/2, then eitherf̂in+1,yin+1
(Zn) ≤ d or f̂in+1,k0

(Zn) ≥ d. By the definition ofc and

d, it follows that there existsk = k0 or k = in+1 such that eitherφ0(f̂in+1,k(Zn+1), δin+1,k) ≥ a or
∣

∣

∣f̂in+1,k(Zn+1) − f̂in+1,k(Zn)
∣

∣

∣ ≥ c/2. Using (2), we have eitherφ0(f̂in+1,k(Zn+1), δin+1,k) ≥ a

or bKin+1,in+1
/(2λn) ≥ c/2, implying that1aφ0(f̂in+1,k(Zn+1), δin+1,k)+

(

bKin+1,in+1

cλn

)p

≥ 1 =

err(f̂in+1,·(Zn), yin+1
). This proves (3).

We are now ready to prove Theorem 1 using (3). For everyj ∈ Zn+1, denote byZ(j)
n+1 the

subset ofn samples inZn+1 with the j-th data point left out. We haveerr(f̂j,·(Z
(j)
n ), yj) ≤

1
aφ(f̂j,·(Zn+1), yj) +

(

b
cλnKj,j

)p
. We thus obtain for allf ∈ RmK :
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The formulation used here corresponds to the one-versus-all method for multi-category classifi-
cation. For the SVM lossφ0(x, y) = max(0, 1 − (2x − 1)(2y − 1)), we may takea = 0.5,
b = 2, andc = 0.5. In the experiments reported here, we shall employ the leastsquares function
φ0(x, y) = (x−y)2 which is widely used for graph learning. With this formulation, we may choose
a = 1/16, b = 0.5, c = 0.5 in Theorem 1.

3 Laplacian regularization

Consider an undirected graphG = (V, E) defined on the nodesV = {vj : j = 1, . . . , m}, with
edgesE ⊂ {1, . . . , m}× {1, . . . , m}, and weightswj,j′ ≥ 0 associated with edges(j, j′) ∈ E. For
simplicity, we assume that(j, j) /∈ E andwj,j′ = 0 when(j, j′) /∈ E. Let degj(G) =

∑m
j′=1 wj,j′

be the degree of nodej of graphG. We consider the following definition of normalized Laplacian.

Definition 1 Consider a graphG = (V, E) of m nodes with weightswj,j′ (j, j′ = 1, . . . , m).
The unnormalized Laplacian matrixL(G) ∈ Rm×m is defined as:Lj,j′(G) = −wj,j′ if j 6=
j′; degj(G) otherwise. Givenm scaling factorsSj (j = 1, . . . , m), let S = diag({Sj}). The
S-normalized Laplacian matrix is defined as:LS(G) = S−1/2L(G)S−1/2. The corresponding

regularization is based on:fT
·,kLS(G)f·,k = 1

2

∑m
j,j′=1 wj,j′

(

fj,k√
Sj

− fj′,k√
Sj′

)2

.

A common choice ofS is S = I, corresponding to regularizing with the unnormalized Laplacian
L. The idea is natural: we assume that the predictive valuesfj,k andfj′,k should be close when
(j, j′) ∈ E with a strong link. Another common choice is to normalize bySj = degj(G) (i.e.
S = D) so that diagonals ofLS become all one [3, 4, 7, 2].

Definition 2 Given labely = {yj}j=1,...,m on V , we define the cut forLS in Definition 1 as:

cut(LS, y) =
∑

j,j′ :yj 6=yj′

wj,j′

2

(

1
Sj

+ 1
Sj′

)

+
∑

j,j′:yj=yj′

wj,j′

2

(

1√
Sj

− 1√
Sj′

)2

.

Unlike typical graph-theoretical definitions of graph-cut, this learning theoretical definition of graph-
cut penalizes not only between-class edge weights but also within-class edge weights when such an
edge connects two nodes with different scaling factors. This penalization is intuitive if we look at the
regularizer in Definition (1), which encouragesfj,k/

√

Sj to be similar tofj′,k/
√

Sj′ whenwj,j′ is
large. If j andj′ belongs to the same class, we wantfj,k to be similar tofj′,k. Therefore for such



an in-class pair(j, j′), we want to haveSj ≈ Sj′ . This penalization has important consequences,
which we will investigate later in the paper. For unnormalized Laplacian (i.e.Sj = 1), the second
term on the right hand side of Definition 2 vanishes, and our learning theoretical definition becomes
identical to the standard graph-theoretical definition:cut(L, y) =

∑

j,j′:yj 6=yj′
wj,j′ .

We considerK in (1) defined as follows:K = (αS−1 + LS(G))−1, whereα > 0 is a tuning
parameter to makeK strictly positive definite. This parameter is important.

For simplicity, we state the generalization bound based on Theorem 1 with optimalλ. Note that in
applications,λ is usually tuned through cross validation. Therefore assuming optimalλ will simplify
the bound so that we can focus on the more essential characteristics of generalization performance.

Theorem 2 Let the conditions in Theorem 1 hold with the regularizationconditionK = (αS−1 +
LS(G))−1. Assume thatφ0(0, 0) = φ0(1, 1) = 0, then∀p > 0, there exists a sample independent
regularization parameterλ in (1) such that the expected generalization error is bounded by:

EZn

1

m − n

∑

j∈Z̄n

err(f̂j,·(Zn), yj) ≤
Cp(a, b, c)

np/(p+1)
(αs + cut(LS, y))p/(p+1)trp(K)p/(p+1),

whereCp(a, b, c) = (b/ac)p/(p+1)(p1/(p+1) + p−p/(p+1)) ands =
∑m

j=1 S−1
j .

Proof. Let fj,k = δyj,k. It can be easily verified that
∑m

j=1 φ(fj,·, yj)/m + λfT QKf = λ(αs +

cut(LS, y)). Now, we simply use this expression in Theorem 1, and then optimize overλ. 2

This theorem relates graph-cut to generalization performance. The conditions on the loss function in
Theorem 2 hold for least squares withb/ac = 16. It also applies to other standard loss functions such
as SVM. Withp fixed, the generalization error decreases at the rateO(n−p/(p+1)) whenn increases.
This rate of convergence is faster whenp increases. However in general,trp(K) is an increasing
function ofp. Therefore we have a trade-off between the two terms. The bound also suggests that if
we normalize the diagonal entries ofK such thatKj,j is a constant, thentrp(K) is independent of
p, and thus a largerp can be used in the bound. This motivates the idea of normalizing the diagonals
of K. Our goal is to better understand how the quantity(αs + cut(LS, y))

p
p+1 trp(K)

p
p+1 is related

to properties of the graph, which gives better understanding of graph-based learning.

Definition 3 A subgraphG0 = (V0, E0) of G = (V, E) is a pure component ifG0 is connected,E0

is induced by restrictingE onV0, and if labelsy have identical values onV0. A pure subgraphG′ =
∪q

ℓ=1Gℓ of G dividesV into q disjoint setsV = ∪q
ℓ=1Vℓ such that each subgraphGℓ = (Vℓ, Eℓ) is

a pure component. Denote byλi(Gℓ) = λi(L(Gℓ)) thei-th smallest eigenvalue ofL(Gℓ).

If we remove all edges ofG that connect nodes with different labels, then the resulting subgraph is
a pure subgraph (but not the only one). For each pure component Gℓ, its first eigenvalueλ1(Gℓ) is
always zero. The second eigenvalueλ2(Gℓ) > 0, and it measures how well-connectedGi is [2].

Theorem 3 Let the assumptions of Theorem 2 hold, andG′ = ∪q
ℓ=1Gℓ (Gℓ = (Vℓ, Eℓ)) be a pure

subgraph ofG. For all p ≥ 1, there exist sample-independentλ andα, such that the generalization
performance of (1),EZn

∑

j∈Z̄n
err(f̂j,·, yj)/(m − n), is bounded by

Cp(a, b, c)

np/(p+1)



s1/2

(

q
∑

ℓ=1

sℓ(p)/m

mp
ℓ

)1/2p

+ cut(LS, y)1/2

(

q
∑

ℓ=1

sℓ(p)/m

λ2(Gℓ)p

)1/2p




2p/(p+1)

,

wheremℓ = |Vℓ|, s =
∑m

j=1 S−1
j , andsℓ(p) =

∑

j∈Vℓ
S

p
j .

Proof sketch. We simply upper boundtrp(K) in terms ofλ2(Gℓ) andsℓ, whereK = (αS−1 +
LS)−1. Substitute this estimation into Theorem 2 and optimize it overα. 2

To put this into perspective, suppose that we use unnormalized Laplacian regularizer on a zero-cut
graph. ThenS = I andcut(LS, y) = 0, and by lettingp = 1 andp → ∞ in Theorem 3, we have:

EZn

∑

j∈Z̄n

err(f̂j,·, yj)

m − n
≤ 2

√

b

ac
· q

n
and EZn

∑

j∈Z̄n

err(f̂j,·, yj)

m − n
≤ b

ac
· m

n minℓ mℓ
.



That is, in the zero-cut case, the generalization performance can be bounded asO(
√

q/n). We can
also achieve a faster convergence rate ofO(1/n), but it also depends onm/(minℓ mℓ) ≥ q. This
implies that we will achieve better convergence at theO(1/n) level if the sizes of the components
are balanced, while the convergence may behave likeO(

√

q/n) otherwise.

3.1 Near zero-cut optimum scaling factors

The above observation motivates a scaling matrixS so that it compensates for the unbalanced pure
component sizes. From Definition 2 and Theorem 2 we know that good scaling factors should be
approximately constant within each class. Here we focus on the case that scaling factors are constant
within each pure component (Sj = s̄ℓ whenj ∈ Vℓ) in order to derive optimum scaling factors.

Let us definecut(G′, y) =
∑

j,j′:yj 6=yj′
wj,j′ +

∑

ℓ 6=ℓ′
∑

j∈Vℓ,j′∈Vℓ′

wj,j′

2 . In Theorem 3, when we

usecut(LS, y) ≤ cut(G′, y)/ minℓ s̄ℓ and letp → ∞ and assume thatcut(G′, y) is sufficiently
small, the dominate term of the bound becomesmaxℓ(s̄ℓ/mℓ)

n

∑q
ℓ=1

mℓ

s̄ℓ
, which can then be optimized

with the choicēsℓ = mℓ, and the resulting bound becomes:

1

m − n

∑

j∈Z̄n

err(f̂j,·, yj) ≤
b

ac
· 1

n

(

√
q +

√

cut(G′, y)

u(G′)minℓ mℓ

)2

,

whereu(G′) = minℓ(λ2(Gℓ)/mℓ). Hence, ifcut(G′, y) is small, then we should chooses̄ℓ ∝ mℓ

for each pure componentℓ so that the generalization performance is approximately(ac)−1b · q/n.

The analysis provided here not only formally shows the importance of normalization in the learn-
ing theoretical framework but also suggests that the good normalization factor for each nodej is
approximately the size of the well-connected pure component that contains nodej (assuming that
nodes belonging to different pure components are only weakly connected). The commonly practiced
degree-based normalization methodSj = degj(G) provides such good normalization factors under
a simplified “box model” used in early studies e.g. [4]. In this model, each node connects to itself
and all other nodes of the same pure component with edge weight wj,j′ = 1. The degree is thus
degj(Gℓ) = |Vℓ| = mℓ, which gives the optimal scaling in our analysis. However, in general, the
box model may not be a good approximation for practical problems. A more realistic approxima-
tion, which we call core-satellite model, will be introduced in the experimental section. For such a
model, the degree-based normalization can fail because thedegj(Gℓ) within each pure component
Gℓ is not approximately constant (thus raisingcut(LS, y)), and it may not be proportional tomℓ.

Our remedy is as follows. Let̄K = (αI+L)−1 be the kernel matrix corresponding to the unnormal-
ized Laplacian. Letvℓ ∈ Rm be the vector whosej-th entry is 1 ifj ∈ Vℓ and 0 otherwise. Then it
is easy to verify that for smallα and near-zerocut(G′, y), we haveαK̄ =

∑q
ℓ=1 vℓv

T
ℓ /mℓ +O(1),

and thusK̄j,j ∝ m−1
ℓ for eachj ∈ Vℓ. Therefore the scaling factorSj = 1/K̄j,j is nearly optimal

for all j. We call this method of normalization (Sj = 1/K̄j,j, K = (αS−1 + LS)−1) K-scalingin
this paper as it scales the kernel matrixK so that eachKj,j = 1. By contrast, we call the standard
degree-based normalization (Sj = degj(G), K = (αI + LS)−1) L-scalingas it scales diagonals
of LS to 1. AlthoughK-scaling coincides with a common practice in standard kernel learning, it is
important to notice that showing this method behaves well inthe graph learning setting is non-trivial
and novel. In fact, no one has proposed this normalization method in the graph learning setting
before this work. Without the learning theoretical resultsdeveloped here, it is not obvious whether
this method should work better than the commonly practiced degree-based normalization.

4 Dimension Reduction

Normalization and dimension reduction have been commonly used in spectral clustering such as
[3, 4]. For semi-supervised learning, dimension reduction(without normalization) is known to im-
prove performance [1, 6] while normalization (without dimension reduction) has also been explored
[7]. An appropriate combination of normalization and dimension reduction can further improve per-
formance. We shall first introduce dimension reduction withnormalized LaplacianLS(G). Denote
by Pr

S
(G) the projection operator onto the eigenspace ofαS−1 + LS(G) corresponding to ther



smallest eigenvalues. Now, we may define the following regularizer on the reduced subspace:

fT
·,kK

−1f·,k =

{

fT
·,kK

−1
0 f·,k Pr

S
(G)f·,k = f·,k,

+∞ otherwise.
(4)

Note that we will focus on bounding the generalization complexity using the reduced dimensionality
r. In such context, the choice ofK0 is not important. For example, we may simply chooseK0 = I.
The benefit of dimension reduction in graph learning has beeninvestigated in [6], under the spectral
kernel design framework. Note that the normalization issue, which will change the eigenvectors and
their ordering, wasn’t investigated there. The following theorem shows that the target vectors can be
well approximated by its projection ontoPq

S
(G). We skip the proof due to the space limitation.

Theorem 4 Let G′ = ∪q
ℓ=1Gℓ (Gℓ = (Vℓ, Eℓ)) be a pure subgraph ofG. Considerr ≥ q:

λr+1(LS(G)) ≥ λr+1(LS(G′)) ≥ minℓ λ2(LS(Gℓ)). For eachk, let f̄j,k = δyj ,k be the target
(encoding of the true labels) for classk (j = 1, . . . , m). Then‖Pr

S
(G)f̄·,k − f̄·,k‖2

2 ≤ δr(S)‖f̄·,k‖2
2,

whereδr(S) = ‖LS(G)−LS(G′))‖2+d(S)
λr+1(LS(G)) , d(S) = maxℓ

1
2|Vℓ|

∑

j,j′∈Vℓ
(S

−1/2
j − S

−1/2
j′ )2.

We can prove a generalization bound using Theorem 4. For simplicity, we only consider least
squares lossφ(fj,·, yj) =

∑K
k=1(fj,k − δk,yj

)2 in (1) using regularization (4) andK0 = I. With
p = 1, we have1

m

∑m
j=1 φ(f̄j,·, yj) ≤ δr(S)2 + λm. It is also equivalent to takeK0 = Pr

S
(G) due

to the dimension reduction, so that we can usetr(K) = r. Now from Theorem 1 witha = 1/16,
b = 0.5, c = 0.5, we haveEZn

1
m−n

∑

j∈Z̄n
err(f̂j,·, yj) ≤ 16(δr(S)2+λm)+ r

λnm . By optimizing
overλ, we obtain

EZn

∑

j∈Z̄n

err(f̂j,·, yj)

m − n
≤ 16δr(S)2 + 32

√

r/n. (5)

The analysis of optimum scaling factors is analogous to Section 3.1, and the conclusions there hold.
Compared to Theorem 3, the advantage of dimension reductionin (5) is that the quantitycut(LS, y)
is replaced by‖LS(G)−LS(G′)‖2, which is typically much smaller. Instead of a rigorous analysis,
we shall just give a brief intuition. For simplicity we takeS = I so that we can ignore the variations
caused byS. The 2-norm of the symmetric error matrixLS(G) − LS(G′) is its largest eigenvalue,
which is no more than the largest 1-norm of one of its row vectors. In contrast,cut(LS, y) behaves
similar to the absolute sum of entries of the error matrix, which is m times more than the averaged
1-norm of its row vectors. Therefore if error is relatively uniform across rows, thencut(LS, y) can
be at an order ofm times more than‖LS(G) − LS(G′)‖2.

5 Experiments

We test the three types of the kernel matrixK (Unnormalized, normalized byK-scaling or L-
scaling) with the two regularization methods: the first method is to useK without dimension re-
duction, and the second method reduces the dimension ofK−1 to eigenvectors corresponding to
the smallestr eigenvalues and regularizes withfTK−1f if Pr

S
(G)f = f and+∞ otherwise. We

are particularly interested in how wellK-scaling performs. Fromm data points,n training labeled
examples are randomly chosen while ensuring that at least one training example is chosen from
each class. The remainingm − n data points serve as test data. The regularization parameter λ
is chosen by cross validation on then training labeled examples. We will show performance ei-
ther when the rest of the parameters (α and dimensionalityr) are also chosen by cross validation
or when they are set to the optimum (oracle performance). The dimensionalityr is chosen from
K, K +5, K +10, · · · , 100 whereK is the number of classes unless otherwise specified. Our focus
is on smalln close to the number of classes. Throughout this section, we conduct 10 runs with
random training/test splits and report the average accuracy. We use the one-versus-all strategy with
least squares lossφk(a, b) = (a − δk,b)

2.

Controlled data experiments

The purpose of the controlled data experiments is to observethe correlation of the effectiveness of
the normalization methods with graph properties. The graphs we generate contain 2000 nodes, each
of which is assigned one of 10 classes. We show the results when dimension reduction is applied
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(a) Nearly-constant degrees. (b) Core-satellite graphs 

Figure 1:Classification accuracy (%). (a) Graphs with near constant within class degrees. (b) Core-satellite
graphs.n = 40, m = 2000. With dimension reduction (dim≤ 20; chosen by cross validation).

to the three types of matrixK. The performance is averaged over 10 random splits with error bar
representing one standard deviation. Figure 1 (a) shows classification accuracy on three graphs that
were generated so that the node degrees (of either correct edges or erroneous edges) are close to
constant within each class but vary across classes. On thesegraphs, bothK-scaling andL-scaling
significantly improve classification accuracy over the unnormalized baseline. There is not much
difference betweenK-scaling’s andL-scaling’s. Observe thatK-scaling andL-scaling perform
differently on the graphs used in Figure 1 (b). These five graphs have the following properties. Each
class consists ofcore nodesandsatellite nodes. Core nodes of the same class are tightly connected
with each other and do not have any erroneous edges. Satellite nodes are relatively weakly connected
to core nodes of the same class. They are also connected to some other classes’ satellite nodes (i.e.,
introducing errors). This core-satellite model is intended to simulate real-world data in which some
data points are close to the class boundaries (satellite nodes). For graphs generated in this manner,
degrees vary within the same class since the satellite nodeshave smaller degrees than the core nodes.
Our analysis suggests thatL-scaling will do poorly. Figure 1 (b) shows that on the five core-satellite
graphs,K-scaling indeed produces higher performance thanL-scaling. In particular,K-scaling
does well even whenL-scaling rather underperforms the unnormalized baseline.

Real-world data experiments

Our real-world data experiments use an image data set (MNIST) and a text data set (RCV1). The
MNIST data set, downloadable from http://yann.lecun.com/exdb/mnist/, consists of hand-written
digit image data (representing 10 classes, from digit “0” to“9”). For our experiments, we randomly
choose 2000 images (i.e.,m = 2000). Reuters Corpus Version 1 (RCV1) consists of news articles
labeled with topics. For our experiments, we chose 10 topics(ranging from sports to labor issues;
representing 10 classes) that have relatively large populations and randomly chose 2000 articles
that are labeled with exactly one of those 10 topics. To generate graphs from the image data, as is
commonly done, we first generate the vectors of the gray-scale values of the pixels, and produce the
edge weight between thei-th and thej-th data pointsXi andXj by wi,j = exp(−||Xi − Xj ||2/t)
wheret > 0 is a parameter (RBF kernels). To generate graphs from the text data, we first create
the bag-of-word vectors and then setwi,j based on RBF as above. As our baseline, we test the
supervised configuration by lettingW + βI be the kernel matrix and using the same least squares
loss function, where we use theoracleβ which is optimal.

Figures 2 (a-1,2) shows performance in relation to the number of labeled examples (n) on the MNIST
data set. The comparison of the three bold lines (representing the methods with dimension reduc-
tion) in Figure 2 (a-1) shows that when the dimensionality and α are determined by cross validation,

(a-1) MNIST, dim and α (a-2) MNIST, optimum  (b-1) RCV1      (b-2) RCV1 
by cross validation     dim and α cross validation   optimum
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Figure 2:Classification accuracy (%) versus sample sizen (m = 2000). (a-1) MNIST, dim andα determined
by cross validation. (a-2) MNIST, dim andα set to the optimum. (b-1) RCV1, dim andα determined by cross
validation. (b-2) RCV1, dim andα set to the optimum.



K-scaling outperformsL-scaling, andL-scaling outperforms the unnormalized Laplacian. The per-
formance differences among these three are statistically significant (p ≤ 0.01) based on the paired
t test. The performance of the unnormalized Laplacian (with dimension reduction) is roughly con-
sistent with the performance with similar(m, n) with heuristic dimension selection in [1]. Without
dimension reduction,L-scaling andK-scaling still improve performance over the unnormalized
Laplacian. The best performance is always obtained byK-scaling with dimension reduction.

In Figure 2 (a-1), the unnormalized Laplacian with dimension reduction underperforms the un-
normalized Laplacian without dimension reduction, indicating that dimension reduction rather de-
grades performance. By comparing Figure 2 (a-1) and (a-2), we observe that this seemingly counter-
intuitive performance trend is caused by the difficulty of choosing the right dimensionality by cross
validation. Figure 2 (a-2) shows the performance at theoracleoptimal dimensionality andα. As
observed, if the optimal dimensionality is known (as in (a-2)), dimension reduction improves per-
formance either with or without normalization byK-scaling andL-scaling, and all transductive
configurations outperform the supervised baseline. We alsonote that the comparison of Figure 2
(a-1) and (a-2) shows that choosing good dimensionality by cross validation is much harder than
choosingα by cross validation, especially when the number of labeled examples is small. On the
RCV1 data set, the performance trend is similar to that of MNIST. Figures 2 (b-1,2) shows the per-
formance on RCV1 using the RBF kernel (t = 0.25, 100NN). In the setting of Figure 2 (b-1) where
the dimensionality andα were determined by cross validation,K-scaling with dimension reduction
generally performs the best. By setting the dimensionalityandα to the optimum, the benefit of
K-scaling with dimension reduction is even clearer (Figure 2(b-2)). Its performance differences
from the second and third best ‘L-scaling (w/ dim redu.)’ and ‘Unnormalized (w/ dim redu.)’ are
statistically significant (p ≤ 0.01) in both Figure 2 (b-1) and (b-2).

In our experiments,K-scaling with dimension reduction consistently outperformed others. Without
dimension reduction,K-scaling andL-scaling are not always effective. This is consistent with our
analysis. On real data,cut is not near-zero, and the effect of normalization is unclear(Section 3.1);
however, when dimension is reduced,‖LS(G) − LS(G′)‖2 (corresponding tocut) can be much
smaller (Section 4), which suggests thatK-scaling should improve performance.

6 Conclusion

We derived generalization bounds for learning on graphs with Laplacian regularization, using prop-
erties of the graph. In particular, we explained the importance of Laplacian normalization and di-
mension reduction for graph learning. We argued that the standardL-scaling normalization method
has the undesirable property that the normalization factors can vary significantly within a pure com-
ponent. An alternate normalization method, which we callK-scaling, is proposed to remedy the
problem. Experiments confirm the superiority of the this normalization scheme.
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