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Abstract—We consider a framework for semi-supervised the behavior of graph-based semi-supervised learning
learning using spectral decomposition-based unsupervide from a more general view of spectral kernel design.
kernel design. We relate this approach to previously pro- gimijar spectral kernel design ideas also appeared in

posed semi-supervised learning methods on graphs. We .
examine various theoretical properties of such methods. In [5], [19]. However, they did not present a graph-based

particular, we present learning bounds and derive optimal learning formulation (Theorem 3.1 in this paper); nor
kernel representation by minimizing the bound. Based on did they study the theoretical properties of such meth-
the theoretical analysis, we are able to demonstrate why ods. We focus on two issues for graph kernel learning
spectral kemel design based methods can improve the ¢ myations based on Theorem 3.1. First, we establish
prgdictive performapce. Empirical examples are ipcluded th " h-b d . o dl .
to illustrate the main consequences of our analysis. € convergence of graph-based semi-supervised learning
(when the number of unlabeled data points increases).
Second, we obtain a learning bound, which can be used
to compare the performance of different kernels. This
analysis gives insight into what are good kernels, and
. INTRODUCTION why graph-based spectral kernel design is often helpful
Spectral graph methods have been used both in clis-various applications. Empirical examples are given to
tering and in semi-supervised learning. This paper fqustify the theoretical analysis.
cuses on semi-supervised learning, where a classifier isThe paper is organized as follows. In Section Il we
constructed from both labeled and unlabeled trainirtgriefly introduce supervised kernel learning formula-
examples. Although previous studies showed that thi®ns. In Section Ill, we establish a new equivalent
class of methods work well for certain concrete problenfermulation of supervised kernel learning on data graphs.
(for example, see [2], [13], [17], [18]), there is noThis formulation forms the basis of our analysis pre-
satisfactory theory demonstrating why, and under wheénted in this paper. Based on this formulation, we show
circumstances, such methods should work. Moreovefiat one can formulate graph-based semi-supervised
from the previous studies, it is not clear what the exa@$arning as kernel-design on graphs. The resulting al-
relationship of graph-based semi-supervised learninggsrithms will be investigated in the subsequent sections.
to the standard supervised kernel learning. Section IV develops the feature formulation of the graph-
The purpose of this paper is to develop a more comased semi-supervised learning algorithm, which we use
plete theoretical understanding for graph-based serg-show that the algorithm converges when the number
supervised learning. In Theorem 3.1, we present a trang-graph nodes goes to infinity. Section V develops a
ductive formulation of kernel-learning on graphs whichransductive bound for graph-based learning, which we
is equivalent to supervised kernel-learning. This kernglill use later to analyze the effect of spectral kernel
learning formulation includes some of the previouslgesign. Section VI presents a model for which spectral
proposed graph semi-supervised learning methods lagnel design method introduced in the paper is effective.
special cases. Consequently, we can view such graptimally, in Section VII, empirical results are used to
based semi-supervised learning methods as kernel desjgftidate various aspects of our theoretical results.
methods that utilize unlabeled data; the designed kernel
is then used in the standard supervised learning setting.
This insight allows us to prove useful results concerning

Index Terms—Graph-based semi-supervised learning,
Kernel design, Transductive learning

Il. SUPERVISEDKERNEL METHODS

. . Consider the problem of predicting a real-valued out-
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relationshipy ~ p(z) from a set of training examples.regularized method in order to avoid overfitting:
Usually the quality of a predictas(x) can be measured n
by a loss functionl.(p(x), y). p() = arg inf |~ 5" LX), Y0 + Al |, @)

In the standard machine learning formulation, we A R
assume that the dat&’, Y") are drawn from an unknown where A > 0 is an appropriately chosen regularization
underlying distributionD. Our goal is to findb(x) so that parameter.
the expected true loss of given below is as small as  Although the minimization is in a Hilbert spadé, it
possible: is well-known that the solution of (3) can be represented

R(()) = Ex.yyonL(p(X).Y), i;sﬁ(a:) =Y, &k(X;,z), and hence, (3) is equivalent

where we usé? x y)~p to denote the expectation with n
respect to the true (but unknown) underlying distributiom(-) = Z Gik (X5, -),
D. Typically, one needs to restrict the hypothesis func- i=1
tion family size so that a stable estimate within the func- 1 n
tion family can be obtained from a finite number of sam{&;] = arg inf |— Z +L Z aik(X;, X;),Y;
ples. Let the training samples b&;,Y7), ..., (X,,Y,). s R 1 15 j=1
We assume that the hypothesis function family that n
predictsy based orx can be specified with the following Y Z aiok(Xi, X5) | - (4)
kernel method:

i,j=1
pla, z) = iaik(Xiax)a 1) This methodl changes the possib!y infinite Qimensional
P problem (3) into an equivalent finite dimensional prob-

lem in terms of then-dimensional vector.. Therefore
We can solve the problem efficiently. In the literatuse,
is often solved through a different formulation (so-called
dual formulation) which can be obtained using convex
duality. The formulation is not important for our purpose
since we only need to use (4) to define the estimator

_____ n IS @ parameter vector that need

to be estimated from the data, ahdis a symmetric

positive kernel. That isk(a,b) = k(b,a), and the
_____ n IS always

positive semi-definite.

Definition 2.1: Let Hy = {Zleaik(xi,x) VNS

N,a; € R}. Hy is an inner product space with norm | gy sUPERVISEDL EARNING ON GRAPHS

defined as ) ) .
1/2 In this section, we present an equivalence of su-
pervised kernel learning to a specific semi-supervised
Zaik(% )| = Zaz‘ajk(%xj) : formulation. Although this representation is implicit in
i ij

the Gaussian process literature (for example, see [10]),

Let H be the closure of{, under the normj| - ||, which 1o the best of the authors’ knowledge, the general form

Hilbert space (RKHS) of. We denote the corresponding€arning community. In particular, this equivalence has
norm as|| - ||#. not been explicitly stated in the previous studies on

. - graph-based semi-supervised learning, although similar
It is well-known and not difficult to check that theobservations were made and discussed implicitly (see

norm || - |l in Definition 2.1 is well-defined, and it de- age 8 of [4], Section 2 of [20], and [1]). As we shall
fines an inner product. Further information on reproduj%—

) ) ) L ee later, the representation is critical for the purpose of
N9 I_-||Ibert spaces can be found in [14]. Definition 2. btaining a better understanding of graph-based semi-
implies thatvp € H:

supervised learning. Therefore in spite of its simple
p(z) = (p, k(x,))n, (2) proof and its close relationship to the more well-known
representer theorem, we shall formally state it here as an
independent theorem for future reference.

Given training data{(X;,Y;)}i=1,...n, We can train In our framework, thedata graphconsists of nodes
a predictorp € H by minimizing the empirical loss. that are the data pointX;. The edge connecting two
However, since the reproducing Kernel Hilbert spaceodesX; and X; is weighted byk(X;, X;), where
H can be large, it is often necessary to consider the kernel functionk(-,-) is defined over the graph

where we us€-, -)5; to denote the inner product iH.



nodes. The theorem essentially implies that a formulatiea be defined on the graph. Note that is always

of graph-based semi-supervised learning is equivalgmsitive semi-definite. However, there are two scenarios
to the supervised learning method which employs thhat require special interpretation:

same kernel. It establishes the transductive graph kernel K is not full rank (singular): the correct interpreta-
learning formulation we will study in this paper. As a tion of fTK1fis lim,, o+ FTK + plxm) "t f,
consequence, we can extend the graph (and the kernel whereI,,,,, is them x m identity matrix. If we
matrix) by including extra points without changing the  start with a given kernet and letk = [k(Xs, X;)),

results on the existing points. then a semi-supervised learning method of the form
Theorem 3.1 (Graph Kernel LearningiConsider la- (5) is equivalent to the supervised method (3).
beled data{(X;,Y;)}i=1,..» and unlabeled dateX, e R = K~!is not full rank: in this case, we need
(j = n+1,...,m). Consider real-valued vectoys = an extension of (5), where we replag¢f;,Y;) by
[f1,..., fm]T € R™, and the following semi-supervised L(f; + Bh;,Y;) with B the null-space ofR, and
learning method: take K to be the pseudo-inverse &. In this case,
the Bh component is unregularized. Similarly we
f=arg inf ZL YD)+ MTKf|, (B) should include an unregularized component in (3)
ferm and (4). For simplicity, we will not consider this
case here.

where K is anm x m matrix with K; ; = k(X;, X;).

Let H be the RKHS ofk, and be the solution of (3), Observe that if we start with a given I_<ernle| and_
then let K = [k(X;, X;)], then the semi-supervised learning

f- —p(X;) (j=1,...,m). method in the form of (5) is equivalent to the supervised
! ! Y method (3). It follows that for a formulation like (5), one
should utilize the unlabeled data to repldcdy a kernel
Proof: At the optimal solution of (5), we have theK in (5), or k by k in (4). There are various ways to
following first-order optimality equation (for example,achieve this. For example, one may use unlabeled data to

see [12]): derive better generalization performance bounds, which
1 . can then be used to select a kernel from a set of kernels
—L/ Vi Y) +2MK Tl =0 (i=1,...,n), to optimize the bound.

INK 1f] 0 (j=n+t1 m) T_he effec_:t of semi-su_pervised learning can also be
J T achieved with the following two stage procedure:
whereL (a,b) denotes a sub-gradient &fwith respect  « Use unlabeled data to design a kerhél, -).
to the first component, anfiK ~' f]; denotes thei-th « Replacek(-,-) by k(-,-) in the supervised formula
component of them-dimensional vector~! f. Now (4).
we can letq; = —Li(f;,Yi)/(2An) for i = 1,....n, |n other words, the benefit of unlabeled data in this
andda; = 0 for j = n+1,...,m. Substituting the setting is to construct a good kernel based on unlabeled
representation into the first- order condition, we obtaigata. At first, this seems strange as it is not clear why
a representation of as: one has to design a kernel based on the unlabeled
f=Ka, st &;=0(G=n+1,...,m) data. quever,.w.e will Iat_er shpw that under some
assumptions, this is a sensible thing to do.
Using this representation in (5), we obtain the following Some of the previous graph-based semi-supervised
equivalent optimization problem: learning studies employ the same formulation (5) with
f—Ka K~ replaced by the graph Laplacian operathrWe
’ only consider the normalized version here:

2
i f'
P =ar i+ L 30 b, ( )
sta;=00G=n+1,...,m). i,j=1 Vdi Vd

It is easy to check that this optimization problem is =+ -D VKD 1/2]f’
equivalent to (4) withf; = [Ké&]; = p(X;). B where d; = Z;." 1k(zi,25) ¢ = 1,...,m), and

It is worth mentioning that in the theorem, while theD = diag({d;}). The transformD~/2K D~1/2 is to
kernel functionk(,-) is typically defined everywhere normalize the kernekK such that the eigenvalues are in

on the input space, the Gram matriX only needs [0,1]. The parametery > 0 is used to ensure that the

aER™

1 n
i f |=) L([Ka];,Y;) + A" K
& = arg in n; ([Kal;, Vi) + Aa” Ka



Laplacian kernelK = ((1 + ) — D™Y2KD=1/2)~1 design-based semi-supervised learning is effective.
is positive definite (see [17]).

The equiyalence of the g_raph I__aplacian formulation IV. FEATURE-SPACEFORMULATIONS
and supervised kernel learning (with kernel matkix= ) )
£~1) was not explicitly discussed in the earlier studies. Y& want to show that as — oo, the semi-supervised
We will show that this equivalence is important fol9orithm in Figure 1 is well-behaved. That ig; con-
good theoretical understanding because it clarifies tNg'9€S asn — oco. This is one of the most fundamental
role of unlabeled data and simplifies the analysis (as URSU€S concerning the semi-supervised learning algorithm

will see later in the paper). Based on this formulatioP"oPosed in Section IIl. For example, related issues for
our focus is to understand the behavior of differerff'® 9raph Laplacian have been investigated recently in

kernels, and why one kernel is preferred to anothdpl: [6]-[8]. Their results depend on geometric properties

Moreover, by treating graph-based supervised learning@sthe graph Laplacian, and require the existence of a
unsupervised kernel-design (see Figure 1), we essentigtinuous Laplacian on a well-defined manifold, from

consider a setting more general than graph Laplaci§fich the data are drawn. Due to the more specific
based methods. assumptions employed, their results cannot be applied

Based on the above discussion, we shall focus &f OUr problem. The analysis presented here relies only
the following unsupervised kernel design-based senfil SOme basic algebraic properties of graph leaming.

supervised learing. Although some of the preVious|'§herefore it applies to situations more general than the

proposed graph methods are variants of this algorithi@f@Ph Laplacian studied earlier. However, our analysis
our analysis still provides useful insights. cannot provide any geometric meaning for the limiting

In Figure 1, we consider a general formulation ofolution Fhat the semi—supervised algorithm converges to.
semi-supervised learning on data graphs through spectral €chnically, the behavior at large is easier to under-
kernel design. As a special case, we canslet g(y;) sta_nd when we _con5|der the feature space re_presentatlon,
in Figure 1, whereg is a rational function, and then Which we shall introduce below. Note that this represen-
K = g(K/m)K. In this special case, we do not havdation is given here only for thg sake of analysis and not
to compute the eigen-decomposition &f. Therefore fOr computational purposes. It is well-known that kernel

we obtain a simpler algorithm with the:) in Figure 1 classifiers are equivalent to linear classifiers with data
replaced by embedded into a high dimensional spa€e(possibly

K = g(K/m)K. (6) !nflnlte dimensional), Whlph we call feature space. There
is a feature representation(z) € F associated with
The algorithm is described in Figure 2. The functif)  each data point: such thatk(z,z’) = (z)T¢(2'),
can be regarded as a filter function which modifies thghere we use the standard linear algebra notation on the
spectral of the kernel. feature space, and consider featuresFio be column
As mentioned earlier, the idea of using spectral kerngéctors. In this setting, each functigri-) € H can be
design has appeared in [S] although they did not bagggarded as a linear classifier 8with weight vectonw,
their method on the graph form_ulatlon (5). In_ _[19]such thatp(z) = w” () for all z, and||p||§1 = wlw.
the spectrum of a graph Laplacian was modified to |t is not difficult to show that the conditiofip||2, =
maximize kernel alignment. Although the idea is relatedy” v implies other properties described above. Therefore
the procedure proposed there is not directly comparalpg reference, we shall introduce the following definition
to ours. The semi-supervised learning methods describgidfeature space.
in Figure 1 or Figure 2 are effective only whehis a  Definition 4.1: A feature spaceF for H is a vector

better predictor thatf in Theorem 3.1; in other WOI'dS, representation such that each funct'pin) € H corre-

when the new kernek is better thank'. In order to gain sponds to a weight vectar, € F and||p|2, = w;{wp_

a good understanding of the behavior of the algorithmser each data point, we define its feature representation
we are interested in the case — oo. Therefore in the ash(z) = Wi(z, -
next few SeCtionS, we investigate the f0||0Wing issues: It is not hard to see that such a feature space exists.
« The limiting behavior off’ in the algorithms as Let B be a complete orthonormal basis f&f; then for
m — oo; that is, whetherfjf converges for each. eachp € H, its coordinate with respect t® forms a

« Generalization performance of (5). feature vector. One may also loosely regatdtself as
« Optimal kernel design by minimizing generalizatiorthe feature space. However, it is convenient to distinguish
error, and its implications. F from H so that we can work with standard linear

« Statistical models under which spectral kernelgebra notation.
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Input: labeled dat&(X;,Y:)]i=1,...n
unlabeled dataX; (j =n+1,...,m)
kernel functionk(-, -)
shrinkage factors; >0 (j =1,...,m)
Output: predictive valuegfjf onX; (j=1,...,m)

Form the kernel matrid< = [k(X;, X;)] (¢, =1,...,m)
Compute the kernel eigen-decomposition:
K =mY " pjvjo, where(u;, v;) are eigenpairs o (v] v; = 1)
Modify the kernel matrix as:
K= mZ;n:l sjujvjv;fr (%)
Compute
fr=arginfrepn [ 3000 L(fi, Vi) + AfTEUf]

Fig. 1. Spectral kernel design based semi-supervisedifgaon graph

Input: labeled dat&(X;, Yi)]i=1,...n
unlabeled dataX; (j =n+1,...,m)
kernel functionk(-, -)
shrinkage functiory(-)

Output: predictive valueﬁz- onX; (j=1,...,m)

Form the kernel matrid< = [k(X;, X;)] (¢, =1,...,m)
Compute
f/ = arg inffeRnl I:% Z?:l L(fl7 1/;) + AfTK_lg(K/m)_lf} .

Fig. 2. Spectral filter design based semi-supervised legran graph

Using the feature space representation, equation (3Xésa change of kernel fromk(z,2’) = (z)T(2') to
equivalent to W (2)TyY! (2') = Y(x)T Sep(a’).
p(z) =7 (x) Our goal is to construck so that (8) is equivalent
. to the graph-based semi-supervised learning methods
N . 1 T T in Section Ill. The re-formulation is useful since it is
v _argul;Ielg: n ;L(w Y(X), Yi) + dwtw more convenient to study the asymptotic behavior of
(7) the S operator whenn — oo under the feature space
representation (instead of the graph representation3. Thi

In this setting, a change of kernel can be regardéyl because the graphs in Section Il grow when
as a change of feature space. In particular,debe a Ncreases, while the feature spa€eremains the same.

positive semi-definite matrix oF. We may consider ~ The analysis given in this section is closely related to

the following estimation method: kernel principal component analysis. We still consider
R A dataX; fori=1,...,m.let¥ = [¢(X1),..., 0 (Xn)].
pla) =o" S 2 (x) Using this notation, the kernel matrix oX; (i =

R . 1 & T /2 - 1,...,m) can be represented @ = ¥7W. We shall
w =arg inf EZL(“’ SHEP(XG),Ys) + Aw wl , design the matrixS in (8) based on the spectral de-
i=1 g composition of K. It can be seen that the spectral
(8) decomposition oft U7 is closely related to that ok
which changes the feature vectors frarw) to ¢’ (z) = if u > 0, then (u,v) is an eigen-pair oftT ¥ implies
S1/2y(z). It is easy to see that this method is equivalerthat (1, Uv/,/k) is an eigen-pair oft U7

5



Lemma 4.1:Consider K = U7TW, where ¢ = by (5) with the kernel Gram matri¥ replaced by

[(p(X1), .. (X)) € F™. Let K = m Y pjvjo; _ T T
be its spectral-decomposition with eigenvalujveﬁj >0 K=0"5% = Z s;U" uju; ¥

(vfv; = 1). Let u; = Wv;/,/mp;, then we have I
spectral decomposition? U7 = m Y puul. Let = si(Kv;//mi) (Kv; [ /mji;)
S =300 sj;;ju;r and K = mY ", s;ujv;0;, then j
Ki,j = z/J(Xl) Sw(XJ) :stjujvjva,
J

Proof: Observe thatKv; = mpu;v; implies that o ) ) S )
(WUT)Py; = WKv; = my;Wv;, which implies that which is consistent with the definition in Figure 1. This

u; is an eigenvector ob U7 with eigenvalueny;. We Proves the second part of the theorem. u

also have the following decomposition: From the reformulation of Figure 2 as Figure 4
™2 T T4 T (and Figure 1 as Figure 3), we can easily under-
(PET)" RO = mzuj(\pvj)(vj ) stand the asymptotic behavior of these algorithms when
) ) ; m — oo. In this case, we just replac&V¥” /m =
=m® ) pjuju. 21 Y(X)Y(X5)T by Exp(X)y(X)T. The spec-
J tral decomposition ofE x (X )y (X)? corresponds to
This implies that we have the spectral decompositidhe feature space PCA. It is clear thatdfconverges,
UUT =m Y pjugui . Now we useKv; = my;v; to  then the feature space algorithm Figure 4 also converges,
obtain: which immediately implies the convergence of the solu-
m m tion of Figure 2. We state the following result, which
K :mz sjujvjvf = Z s (Kv;)(Kv;)T /(mu;) is self-evident. It shows that under mild conditions, the
j=1 j=1 semi-supervised learning methods in Figure 4 and in

r - - Figure 2 are well behaved when — oc.
s (U7 W) (U5 Wo;)" /(mpy)

NE

Theorem 4.2:Consider a sequence of data

<.
Il
—

m X1,X5,... drawn from a distribution, with only
:ZSj(\I;Tuj)(\I;Tuj)T =75y, the first n points labeled. Assume whem — oo,
i=1 e (X;)¥(X;)T /m converges tdE x ¢ (X )y (X)T

This proves the second part of the lemma - almost surely, and(-) is a continuous function in the

spectral range oE x1(X)y(X)T. Then the following
Using this lemma, we can obtain the feature spacéims hold for Figure 4:
equivalence of Figure 1 and Figure 2. They are given in

Figure 3 and Figure 4 respectively. « S converges almost surely WExy(X)y(X)T).
- ) o Y(x) converges almost surely to
Theorem 4.1:Let k(z,2") = ¢ (x)” (a’). Then Fig- G(Ex(X)0(X)T) 2y (z).

ure 2 and Figure 4 are equivalent; = p'(X;) G = | 5 converges almost surely.

1,...,m). Moreover, if in Figure 1 and Figure 3, we use | \with kernel k(z,2') = ¥(z)T¥(z') in Figure 2
eigenvectors; = Yo, /./mp;, then the two algorithms fj = 7/(X;) converges almost surely.

are equivalentf = p'(X;) (j = 1,...,m).

Proof: The first half of the theorem follows from The theorem says that in the limit, the semi-supervised
the second half. To see this, we may lgt = g(y;) learning procedure is well-behaved in that the solution

andu; = Uv;/,/mf;. Hence by Lemma 4.1, we haveconverges to a well-defined solutiop in (8) v_vith a well-
S = g(vuT/m) = >, g(ugyuzu? = >, syuzul in defined S. .However, the geometric meaning _of the
Figure 4. This is consistent with the definition of in opgratorS IS not eTxammed here. The assumptlonT that
Figure 2. 21 w(XJ)lb(XJ) /m converges tO‘wa(X)iﬁ(X)
almost surely is rather mild. It is essentially a conse-
Therefore we only need to prove the second paduence of the strong law of large numbers on vector
Based on the discussion after (8), we know that the solspaces. Note also that statements similar to those of
tion of Figure 3 is equivalent to the solution of (4) withTheorem 4.2 hold for Figure 3 and Figure 1 as well. In
the kernek(z, z') replaced byk(z, ') = ¢ (z)T' Sy (2’). this case,S converges if the eigenvectots converge
By Theorem 3.1, on the data-graph, the solution is giveand the shrinkage factors are bounded.



Input: labeled dat&(X;,Y:)]i=1,...n
unlabeled dataX; (j =n+1,...,m)
feature map)(z) € F
shrinkage factors; >0 (j =1,...,m)

Output: predictive functiony’(z)

Let ¥ = [w(Xl)v ce 7¢(Xm)]
Compute the feature-space eigen-decomposition:
OUT fm =371 pjugul, where(pu;, u;) are eigenpairs o@ U7 (u]u; = 1)
Define
S = ZTZI sjuju ande(z) = S'/%(x)
Solve
W' = arginfyer [2 D7 L(w?¥(X;), Vi) + Adwlw]
Let 7' (x) = @/ (x)

Fig. 3. Spectral kernel design based semi-supervisedifgaon feature space

Input: labeled data(X;,Y:)]i=1,...n
unlabeled dataX; (j =n+1,...,m)
feature map)(z) € F
shrinkage factors; >0 (j =1,...,m)

Output: predictive functiony’(zx)

Let U = [w(Xl)v cee 7¢(Xm)]
Define
S =g(WUT/m) , andi(z) = S'/?)(x)
Solve
W' = arginfyer [2 300 L(wl¥(X5),Y;) + dwlw]
Let /(z) = /T ()

Fig. 4. Spectral filter design based semi-supervised legran feature space

V. GENERALIZATION ANALYSIS ON GRAPHS For clarity, we use a simple complexity analysis and

. . L . compare expected generalization behavior. We focus on
In this section, we study the generalization behavior g

the graph-based semi-supervised learning algorithm (
and use it to compare different kernels. We will then u
this bound to justify the kernel design method given in

Section I, , , Theorem 5.1:Consider (X;,Y;) for i = 1,...,m.
To measure the sample complexity, we consifler aqgyme that we randomly pick distinct integers

p_oir_1ts ().(ﬁyj) fqr i= }, —.,m. We random'){ pickn i1,...,in from {1,...,m} uniformly (sample without
distinct integersiy, . ..,i, from {1,...,m} uniformly replacement), and denote it b¥,. Let f(Z,) be the

(sample without replacement), and regard it as #he gomi_supervised learning method (5) using training data
labeled training data. We obtain predictive valugs ;, ~ .

on the graph using the semi-supervised learning method

(5) with the labeled data, and test it on the remaining; B . 1 s T -1

data (that are not included in the training data). We arJ(Z”) s flergm n XZ: L(fi Yo + AFTET )
interested in the average predictive performance over all 1€

random draws. If |L1(p,y)| = |4 L(p,y)| <, and L(p,y) is convex

vealing the right quantities that determine the learning
mplexity, instead of trying to obtain the tightest and
ost general bound. The proof is given in the Appendix.



with respect top, then we have a function f with respect toK is given by

1 .
EZn L(f(Zn)7 Y) T - -
m—n ﬁzz:n ! ! R(A,E) =D sy | | D ad/(sim5)
j=1 j=1
. 1 « o1, Yr(K) : : _
< inf |— ZL(fJ" Vi) + M MTK -+ =2 If we believe that a good approximate target functjon
ferm | m ] ZAnm can be expressed gs= >~ a;v; with |a;| < B; for

some knowng;, then based on this belief, the optimal
choice (according to the bound) of the shrinkage factor
The complexity term in Theorem 5.1 relies on thdecomess; = 3;/u;. That is, we use a kernel
quantity tr(K/An), which has appeared previously in _ .
the literature on related problems (for example, [9]). K= Zﬁjvj“jv
We should note that the bound in Theorem 5.1 is not J
necessarily optimal. For example, for the least squarediere v; are normalized eigenvectors df. In this
method or logistic regression, a more refined quantiyase, we haveR(f, K) < (Zjﬁj)Q. The eigenvalues
tr((K + AnI)~!'K) was suggested in [16]. It is shownof the optimal kernel is thus independent &f, but
that for many problems, the refined quantity leads tepends only on the spectral coefficient's rarijeof
the optimal rate of convergence. However, the bound the approximate target function.
Theorem 5.1 is simpler and easier to work with. We are Since there is no reason to believe that the eigenvalues
mainly interested in whether we can use it to explaip; of the original kernelK are proportional to the target
the effectiveness of kernel design methods, and whsectral coefficient range, if we have some guess of
are the implications of the bound. As we shall show ithe spectral coefficients of the target, then one may use
Section VII, the bound leads to observable consequendkis knowledge to obtain a better kernel. This justifies
in practical applications. Therefore the analysis givewhy spectral kernel design-based algorithms can be
here is adequate for our purpose (although refinemepistentially helpful (when we have some information on
are possible). the target spectral coefficients). In practice, it is usuall
difficult to have a precise guess 8f. However, for many
The bound in Theorem 5.1 depends on the regularizapplications, we observe in practice that the eigenvalues
tion parameter\ in addition to the kerneK. In order of kernel K decays slower than that of the target spectral
to compare different kernels, we shall compare boundsefficients. In this case, our analysis implies that we
with the optimal for each K. That is, in addition to should use an alternative kernel with faster eigenvalue
minimizing f, we also minimize ovek on the right hand decay: for example, using’? instead of K. This has
of the bound. Note that in practice, it is often possible ta dimension reduction effect. That is, we effectively
find a near-optimal through cross validation when theproject the data into the principal components of data.
amount of training data is not too small. This implieThe intuition why this helps is also quite clear: if the
that assuming the optimal in the bound is reasonabledimension of the target function is small (spectral coef-
for many practical problems. With optimal| we obtain: ficient decays fast), then we should project data to those
dimensions by reducing the remaining noisy dimensions
Corollary 5.1: Under the conditions of Theorem 5.1 (corresponding to fast kernel eigenvalue decay).

assume that we are given the optimalThen: In the next section, we use a statistical model to
1 ) illustrate why in practical problems, the spectral coef-
Ez.— > L(f5(Z0),Yy) ficients of the target function often decay faster than the
i¢Zn eigenvalues of a natural kerngl. In essence, this is due
L& to the fact that the input vector is often corrupted with
< inf |— Z L(f;,Y;)+ L R(f,K)|, small amounts of noise. Such noise does not significantly
fehm 1 m = V2n affect the target spectral coefficients, but will flattens th
where eigenvalues ofx.
_ T —1
R(f,K) =tr(K/m) f" K™ f VI. SPECTRAL ANALYSIS
is the complexity off with respect to kernek'. We provide a justification of why spectral coefficients

B of the target function often decay faster than the eigen-
If we define K as in Figure 1, then the complexity ofvalues of a natural kerndk. In essence, this is due to



the fact that an input vectak is often corrupted with  Theorem 6.1:Consider the data generation model in

noise. Together with results in the previous section, weection VI-A, with observationX = z, + § andY =

know that in order to achieve optimal performance, we” z,. Assume that is conditionally zero-mean given

may use a kernel with faster eigenvalue decay. 0: B0 = 0. Let EXXT = Zj ujujujT be the spectral
In this section we consider the feature space regecomposition with decreasing eigenvalw;s(ujruj =

resentation. We show that when the input feature i. Then the following claims are valid:

corrupted with small amounts of random noise, then the, et o} > 03 > --- be the eigenvalues of the noise

eigenvalues of< will become flatter, while the spectral covariance matridd, o3 , theny; > Cff—-

coefficients of a reasonable target function will be less  |f |6,y < b/|w.]|2, then|w? X; — Y;| < b.

affected. o If wI(EZz})'w, < oo for somet > 0, then
S isi(wlug)?pst <wl (BEzr]) ..

A. Input noise model Proof: The conditional zero-mean of noise implies

We consider a statistical model using the feature spatché’jlt
notation in Section IV. For simplicity, we assume that
¥(z) = z. The model we consider here assumes th&tiven an arbitraryj dimensional subspac¥, by the
noise is added to the feature vector It is worth minimax principle for intermediate eigenvalues, we have
mentioning that although this model is justifiable fothe following inequalityy; > inf,cv v" EX X0 /vT 0.
the linear kernelk(z,2’) = zx, it may not be the Now we can také/ to be thej-dimensional subspace
most appropriate model for nonlinear kernels. Howevespanned by the largegteigenvectors oEd»51 . Since
we believe the analysis still provides useful insights fof, € V", it is clear thatV e V,*; thereforevv € V,
such kernels, although a more complete analysis requit€sy = v*'é, andv’z, = 0. We thus haverv € V:
further investigation.

We consider a two-class classification probleng®it? o (BXX v = B(v"5)° 2 UTMJZ'

(with the standard 2-norm inner-product), where thghis implies the first claimp; > sz__

label Y = £1. We first start with a noise free model, \We also havejw! X; — Y| = |wlz, x) — Y+
where the data can be partitioned inicclusters. Each wl'6(X))| = |wl61(X3)| < |lwll2]|61(X;)]|2 < b. This
cluster/ is composed of a single center point(having proves the second claim.

zero variance) with labgj, = £1. In this model, assume  Using the following equations

that the centers are well separated so that there is a

EXXT = Ezz] + Ess”.

weight vectorw, such thatw? w, < oo andw? 7, = 7. > (wluy)?/ph =w! (BXXT) w,
Without loss of generality, we may assume tizatand izl
w, belong to ap-dimensional subspack,. Let V- be =w! (Ez,7{ +E66") "w,
its orthogonal complement. <w! (Bzz} ) ‘w.,
Assume now that the observed input data are corrupted _ ) _
with noise. We first generate a center indéxand We obtain the third claim. u

then noises (which may depend orf). The observed N order to relate the above theorem to ker_nel d_esign
input data is the corrupted dati = 7, + 6, and Methods on graphs, we may use the following simple
the observed output i = w”z,. In this model, let result. _ _

¢(X;) be the center corresponding 19, the observation _ Proposition 6.1:ConS|dermTp0|ntsX1, cooy X Let
can be decomposed asf; = Zx, + 6(X,), and ¥ = [X1,.... Xu], K = 70, ﬁnd let its spTectraI
Y; = wl'zyx,). Given noised, we decompose it as decomposition be<' =m 3, pv;v; . Let fi = w, X5,

§ = 61 + 5 whereé; is the orthogonal projection of and letf = 3. a;v;, thena; = vmmgwlug, where

d in V,, and d, is the orthogonal projection of in % = Yv;/ /M.

Vﬁ. We assume thaf; is a small noise component; Progf: We havea; = fTv; = wlWv; =
the componend, can be large but has small variance in/"H; Wy 5. ) u
every direction. This proposition implies that if we assume that asymp-

totically = > " X;XI — EXXT, then we have the
following consequences from Theorem 6.1:

B. Analysis . fi = wl'X; is a good approximate target whén
Under the model in Section VI-A, we have the fol- is small. In particular, ifo < 1, then this function
lowing result. always gives the correct class label.



» The spectral coefficients; of f decays as see [17]. The functiory(u) is plotted againstl — p
m in Figure 5 (witha = 0.9,0.99,0.999). Our analysis
1 Z a?/u}” < wl (Bzezl) w,. suggests that it is the dimension reduction effect of this
mi3 function that is important, rather than the connection to
the graph Laplacian. As we shall see in the empirical
examples, other kernels such &%, which achieve
similar dimension reduction effect (but have nothing to
do with the graph Laplacian), also improve performance.

That is, on average, target coefficients decay at
least as fast as thé;r—t-th power of the eigenval-
uespu; of K/m, if wl'(Ez,zl) 'w, is bounded.
Thereforea; decays faster thap; (on average) if
t>1.

» The eigenvalug:; can decay slowly when the noise .
spectral decays slowlyz; > o7. This slow decay oo
is caused by noise in the feature vectors. o8-

In summary, our analysis implies that if the clean o7}
data is well behaved, in the sense that we can find :
target weight vectonv,. such thatw! (Ez,z} ) tw, is
bounded for some > 1, then when the observed data
are corrupted with noise, we can find a good approximate o«
target function f with spectral coefficients decaying ;|
faster than the eigenvalues of the kernel matrix.

0.6

05F

(-ay(L-a )

0.2

01f

C. Spectral kernel design

o .
10° 10° 10" 10° 107 10" 10°

We showed that if the input data is corrupted with 11
noise, then the spectral coefficient of the target function
is likely to decay faster than that of the original kernef9- 5 (1 —@)/(1 —ap) versusl — p.
It is thus helpful to use a kernel with faster spectral
decay. For example, instead of usifg, we may use
K?2. However, it is may not be easy to estim_ate the VII. EXPERIMENTS
exact decay rate of the target spectral coefficients. In
practice, one may use cross validation to optimize the This section uses empirical examples to demonstrate
kernel. Another approach is to optimize a learning boursbme consequences of our theoretical analysis. We shall
(e.g. Theorem 5.1), which may lead to semi-definitese the MNIST data set and the 20newsgroup data set,
programming formulations [9]. both of which are commonly used by graph-based semi-
A kernel with fast spectral decay projects the data intsupervised learning researchers.
the most prominent principal components. Therefore in
this paper, we are interested in designing kernels which
can achieve a dimension reduction effect. Although orfe Data

may use direct eigenvalue computation, an alternative iSThe MNIST data sét consists of hand-written digit
to use a filter functiory(K/m)K, as in Figure 2. For jmage data (representing 10 classes, from digit “0” to
example, we may consider normalized kernel such th@v)' The 20newsgroup data set consists of documents
K/m = 3 pjujuj where0 < u; < 1. A standard from 20 newsgroups (representing 20 classes ranging
normalization method is to usB~'/2K'D~'/2, where over a variety of topics — computer hardware, sports, and
D is the diagonal matrix with each entry correspondingo on). In pre-processing, we removed the header lines
to the row sums of<.. (subjects, newsgroup names, senders, and so forth) and
It follows thatg(K/m)K =mY_ . g(u;)ujuju; . We common stop words. We use the standard TFIDF term
are interested in a functionsuch thaty(;.) ~ 1 when weighting to represent data points. On both data sets,
p € [a,1] for somea, and g(u)u =~ 0 whenp < o we randomly drawn = 2000 samples, and then regard
(where « is close to 1). One such function is to let, = 100 of them as labeled data, and the remaining
g(uw)p = (1 —a)/(1 —au). This is the function used in , — n = 1900 as unlabeled test data.
various graph Laplacian formulations with normalized
Gaussian kernel as the initial kern&l. For example,  Ihttp://lyann.lecun.com/exdb/mnist/
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B. Tested methods method is to validate our analysis by checking
whether a good kernel in our theory actually pro-
duces good classification performance on real data.
Note that in the figures of spectral coefficients we
show averagedg; over all the classes.

For simplicity, we use the squared loggp,y) =
(p — y)? throughout the experiments since the resulting
formulation has a closed form solution. The method can
be handled by a refined version of Theorem 5.1, which
leads to the same conclusions as those of Section VI.
We study the performance of various kernel desigi. Results

methods by changing the spectral coefficients of the Figure 6 shows the spectral coefficients of the above
initial Gram matrix k', as in Figure 1. Below we writg;  mentioned kernel design methods and the corresponding
for the new spectral coefficient of the new Gram matri¥|assification performance on the MNIST data set. The

K:ie, K = 31" jwiv]. We study the following initial kernel is normalized 25-NN, which is defined as
kernel design methods (also see [5]), with a dimensiog — 1p=1/2(D + W)D~1/2 (see previous section),

cut off parameterl, so that; = 0 wheni > d. where for two nodes # j, W;; = 1 if either thei-th
o [1,...,1,0,...,0]: sets the first coefficients tol example is one of the 25 nearest neighbors of jike
and the rest to zero: example or vice versa; and;; = 0 otherwise. Note that
B 1 ifi<d D + W has non-negative eigenvalues. As expected, the
i = { 0 otherwise results demonstrate that the target spectral coefficients
'Y’ decay faster than that of the original kernél.
This was used in spectral clustering [11]. Therefore it is useful to use kernel design methods that
« TruncatedK accelerate the eigenvalue decay. The accuracy plot on
o ifi<d the right is consistent with our theory. The oracle kernel
Hi { 0  otherwise 'Y" performs well especially when the dimension cut-

This method is essentially kernel principal compo(—)]cf Is large. With appropriate dimensiah) all methods

nent analysis which keeps th& most significant per_fo”‘? better than the _superwsed_base-_lme (o_rlglﬁ)al
L which is below65%. With appropriate dimension cut-
principal components of¢.

- off, all methods perform similarly (ove30%). However
KP: sets the coefficients to theth power of the S . " '
—— - i heth p K? with (p = 2,3,4) is less sensitive to the cut-off
initial coefficients: . . L .
dimensiond than the kernel principal component dimen-

[ = { pp  ifi<d sion reduction method’. Moreover, the hard threshold
0 otherwise method in spectral clusteringl(...,1,0,...,0]) is not
We setp = 2,3,4. This accelerates the decay oftable.
eigenvalues ofK. Similar behavior can also be observed with other
« Inverse: initial kernels. Figure 7 shows the classification accuracy
(= pps/mn)  ifi<d with the stgndard Ggussian kerne_l as the initial kernel
Hi = { 0 otherwise K, both with and without normalization, on MNIST.

We also used different bandwidthto illustrate that the
p is a constant close to 1 (we used 0.999). Whesehavior of different methods are similar with different
the kernel is normalized bip~'/2WD~1/2 thisis ¢ (in a reasonable range). However, we did not try to
essentially graph Laplacian based semi-supervisggtimizet. Although for unnormalized kernels, “inverse”
learning (e.g., see [17]). However, the unnormals not Laplacian, we include it for completeness. We
ized graph Laplacian regularization, correspondinglso observe that “inverse” is more sensitive to the
to unnormalized kernels, is typically defined agandwidtht¢ (and more generally, the initial kernel)
D — W. It does not correspond to the inversghan other methods. This is because it requires many

transformation ofiV" defined here. eigenvalues of the initial kernel to be close to the

Also note that the graph Laplacian formulationargest eigenvalue to achieve good eigenvalue decay

sometimes setd = m. behavior. Again, we observe that the oracle method
o Vi performs extremely well. The spectral clustering kernel

is sensitive to the cut-off dimension, whil&? with
p = 2,3,4 are quite stable. The standard kernel principal
This is the oracle kernel that optimizes our genecomponent dimension reduction (methéd performs
alization bound. The purpose of testing this oracleery well with appropriately chosen dimension cut-off.

A otherwise
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Fig. 6. MNIST. Left: spectral coefficients; right: class#ton accuracy. Initial kernel is normalized 25-NN kernel.

The unnormalized 25-NN kernel results (Figure 10) also VIIl. CONCLUSION
show the similar trend. The experiments are consistent
with our theoretical analysis. We investigated a class of graph-based semi-

) o supervised learning methods. By establishing a graph
Essentially similar results can also be observed on thg. . jation of kernel learning, we showed that this
20newsgroup data set using various initial kernels. [aqq of semi-supervised learning methods is equivalent
Figures 11 and 12, the initial kernels are unnormalized ghervised kernel learning with unsupervised kernel

and normalized linear kernel, respectively, which a_rGesign (explored in [5]). Our formulation is closely

often used for text categorization. The initial kernels ipy|4ted to previously proposed graph learning methods
Figure 13 and 14 are unnormalized and normalized 3;,4 covers some of them as special cases

NN, respectively. Based on this equivalence formulation, we then stud-

The right half of Figure 8 plots the spectral coefficient®d various theoretical issues for the proposed methods.
for the input data contaminated by random noise. THerstly, we studied the convergence behavior of the
noise was generated by randomly choosing and swappiggorithms when the size of unlabeled data set increases.
approximately 10% of pixels. Compared with the casé/e showed that the methods are well-behaved in the
without noise (the left half of the same figure), wdimit under appropriate conditions. We then obtained a
observe that the random noise ‘flattens’ the eigenvalgeneralization bound for graph learning, which we used
curve (methodK) while it does not affect the targetto analyze the effect of different kernels. In our analysis
coefficients Y’ much. This is in line with our analysis (which is not necessarily tight), the eigenvalues of the
in Section VI-B. In this case, again, it is useful to useptimal kernel (by minimizing the bound) should decay
kernel design methods that accelerate the eigenvahiethe same rate as the target spectral coefficients. In ad-
decay. As shown in Figure 9, the noise degrades tddion, we showed that noise added to the input features
performance of the initialX (horizontal line) by 19.1%. can cause the target spectral coefficients to decay faster
The performance of spectral kernel methods is aldban the kernel spectral coefficients. Combined with the
degraded by noise, but the degradation is as small gsneralization error bound, our analysis implies that it is
10%. helpful to use a kernel with faster spectral decay (than the
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initial kernel). In conclusion, our analysis explains why iRie Johnson (formerly, Rie Kubota Ando) Rie Johnson obtained a

is often helpful to modify the original kernel eigenvalueg§hP degree in computer science from Cornell University i012Ghe
was a research scientist at IBM T.J. Watson Research CantieR007.

to achieve a dimension reduction effect.
Finally we point out that the analysis itself does not
provide any data-dependent generalization bound useful
for selecting or optimizing kernels (such as what was
done in [9]). It only suggests methods to design kernels
with fast eigenvalue decay, but does not indicate which
method is better. How to derive a tight bound for directly
optimizing eigenvalue decay would be an interesting
research direction. Another simpler method, which may
be employed in practice when the number of labeled data
is not too small, is to select from a set of kernels (such
as those suggested in the paper) using cross-validation.

APPENDIX

We prove Theorem 5.1. We shall use the following
notation: leti,, 1 # 41,...,4, be an integer randomly
drawn from{1,...,m} — Z,, and letZ,,; = Z, U
{int1}. Let f(Zn+1) be the semi-supervised learning
method (5) using training data i, ;1:

. 1 T 7-—1
f(Znia) = arg inf 5}6; L(f,Y:) + MR f
(3 n+1

We employ a stability result from [15], which can
be stated in our terminology asif;,.,(Zn+1) —

fin (Zn)| < |L/1 (fin+1 (ZnJrl)v }/in+1)|Kin+1-,in+1/(2)‘n)'
This implies that

Lfini1(Zn), Yinir)
<L(finir (Zns1), Yinn) + Kir a7/ (220).
It follows thatVf € R™ that is not random:
1 .
m—n jgzzn L(fj(Zn)v YJ)
:EZn+1L(fin+1 (Zn)a }/;n+1)
SEZnH [L(fin+1 (Zn+1), Yin+1) + Kin+17in+1’72/(2)‘n)]

1 5 tr(K)vy?
=E e L I, , Y —_
Zn+t1 n+1 kEZZ (fk( +1) k) + 2\nm
n+1

Ez,

n 1

> L Ye) + MK

k€EZp 41
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_|_

tr(K )2

2 nm

L(f,Y;) +
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n+1
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7tr(K)
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