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Abstract—We consider a framework for semi-supervised
learning using spectral decomposition-based unsupervised
kernel design. We relate this approach to previously pro-
posed semi-supervised learning methods on graphs. We
examine various theoretical properties of such methods. In
particular, we present learning bounds and derive optimal
kernel representation by minimizing the bound. Based on
the theoretical analysis, we are able to demonstrate why
spectral kernel design based methods can improve the
predictive performance. Empirical examples are included
to illustrate the main consequences of our analysis.

Index Terms—Graph-based semi-supervised learning,
Kernel design, Transductive learning

I. I NTRODUCTION

Spectral graph methods have been used both in clus-
tering and in semi-supervised learning. This paper fo-
cuses on semi-supervised learning, where a classifier is
constructed from both labeled and unlabeled training
examples. Although previous studies showed that this
class of methods work well for certain concrete problems
(for example, see [2], [13], [17], [18]), there is no
satisfactory theory demonstrating why, and under what
circumstances, such methods should work. Moreover,
from the previous studies, it is not clear what the exact
relationship of graph-based semi-supervised learning is
to the standard supervised kernel learning.

The purpose of this paper is to develop a more com-
plete theoretical understanding for graph-based semi-
supervised learning. In Theorem 3.1, we present a trans-
ductive formulation of kernel-learning on graphs which
is equivalent to supervised kernel-learning. This kernel
learning formulation includes some of the previously
proposed graph semi-supervised learning methods as
special cases. Consequently, we can view such graph-
based semi-supervised learning methods as kernel design
methods that utilize unlabeled data; the designed kernel
is then used in the standard supervised learning setting.
This insight allows us to prove useful results concerning
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the behavior of graph-based semi-supervised learning
from a more general view of spectral kernel design.
Similar spectral kernel design ideas also appeared in
[5], [19]. However, they did not present a graph-based
learning formulation (Theorem 3.1 in this paper); nor
did they study the theoretical properties of such meth-
ods. We focus on two issues for graph kernel learning
formulations based on Theorem 3.1. First, we establish
the convergence of graph-based semi-supervised learning
(when the number of unlabeled data points increases).
Second, we obtain a learning bound, which can be used
to compare the performance of different kernels. This
analysis gives insight into what are good kernels, and
why graph-based spectral kernel design is often helpful
in various applications. Empirical examples are given to
justify the theoretical analysis.

The paper is organized as follows. In Section II we
briefly introduce supervised kernel learning formula-
tions. In Section III, we establish a new equivalent
formulation of supervised kernel learning on data graphs.
This formulation forms the basis of our analysis pre-
sented in this paper. Based on this formulation, we show
that one can formulate graph-based semi-supervised
learning as kernel-design on graphs. The resulting al-
gorithms will be investigated in the subsequent sections.
Section IV develops the feature formulation of the graph-
based semi-supervised learning algorithm, which we use
to show that the algorithm converges when the number
of graph nodes goes to infinity. Section V develops a
transductive bound for graph-based learning, which we
will use later to analyze the effect of spectral kernel
design. Section VI presents a model for which spectral
kernel design method introduced in the paper is effective.
Finally, in Section VII, empirical results are used to
validate various aspects of our theoretical results.

II. SUPERVISEDKERNEL METHODS

Consider the problem of predicting a real-valued out-
put y based on its corresponding input vectorx. In
machine learning, our goal is to estimate a functional



relationshipy ≈ p(x) from a set of training examples.
Usually the quality of a predictorp(x) can be measured
by a loss functionL(p(x), y).

In the standard machine learning formulation, we
assume that the data(X,Y ) are drawn from an unknown
underlying distributionD. Our goal is to findp(x) so that
the expected true loss ofp given below is as small as
possible:

R(p(·)) = E(X,Y )∼DL(p(X), Y ),

where we useE(X,Y )∼D to denote the expectation with
respect to the true (but unknown) underlying distribution
D. Typically, one needs to restrict the hypothesis func-
tion family size so that a stable estimate within the func-
tion family can be obtained from a finite number of sam-
ples. Let the training samples be(X1, Y1), . . . , (Xn, Yn).
We assume that the hypothesis function family that
predictsy based onx can be specified with the following
kernel method:

p(α, x) =

n
∑

i=1

αik(Xi, x), (1)

whereα = [αi]i=1,...,n is a parameter vector that needs
to be estimated from the data, andk is a symmetric
positive kernel. That is,k(a, b) = k(b, a), and the
n×n Gram matrixK = [k(Xi, Xj)]i,j=1,...,n is always
positive semi-definite.

Definition 2.1: Let H0 = {
∑ℓ

i=1 αik(xi, x) : ℓ ∈
N,αi ∈ R}. H0 is an inner product space with norm
defined as
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∥
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i
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∥
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∥

∥

=
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∑

i,j

αiαjk(xi, xj)





1/2

.

Let H be the closure ofH0 under the norm‖ · ‖, which
forms a Hilbert space, called the reproducing kernel
Hilbert space (RKHS) ofk. We denote the corresponding
norm as‖ · ‖H.

It is well-known and not difficult to check that the
norm ‖ · ‖H in Definition 2.1 is well-defined, and it de-
fines an inner product. Further information on reproduc-
ing Hilbert spaces can be found in [14]. Definition 2.1
implies that∀p ∈ H:

p(x) = 〈p, k(x, ·)〉H, (2)

where we use〈·, ·〉H to denote the inner product inH.

Given training data{(Xi, Yi)}i=1,...,n, we can train
a predictorp̂ ∈ H by minimizing the empirical loss.
However, since the reproducing Kernel Hilbert space
H can be large, it is often necessary to consider a

regularized method in order to avoid overfitting:

p̂(·) = arg inf
p∈H

[

1

n

n
∑

i=1

L(p(Xi), Yi) + λ‖p‖2
H

]

, (3)

whereλ > 0 is an appropriately chosen regularization
parameter.

Although the minimization is in a Hilbert spaceH, it
is well-known that the solution of (3) can be represented
asp̂(x) =

∑n
i=1 α̂ik(Xi, x), and hence, (3) is equivalent

to

p̂(·) =

n
∑

i=1

α̂ik(Xi, ·),

[α̂i] = arg inf
[αi]∈Rn





1

n

n
∑

i=1

+L





n
∑

j=1

αjk(Xi, Xj), Yi





+λ
n
∑

i,j=1

αiαjk(Xi, Xj)



 . (4)

This method changes the possibly infinite dimensional
problem (3) into an equivalent finite dimensional prob-
lem in terms of then-dimensional vectorα. Therefore
we can solve the problem efficiently. In the literature,α
is often solved through a different formulation (so-called
dual formulation) which can be obtained using convex
duality. The formulation is not important for our purpose
since we only need to use (4) to define the estimatorα̂.

III. SEMI-SUPERVISEDLEARNING ON GRAPHS

In this section, we present an equivalence of su-
pervised kernel learning to a specific semi-supervised
formulation. Although this representation is implicit in
the Gaussian process literature (for example, see [10]),
to the best of the authors’ knowledge, the general form
of this representation is not well known in the machine
learning community. In particular, this equivalence has
not been explicitly stated in the previous studies on
graph-based semi-supervised learning, although similar
observations were made and discussed implicitly (see
page 8 of [4], Section 2 of [20], and [1]). As we shall
see later, the representation is critical for the purpose of
obtaining a better understanding of graph-based semi-
supervised learning. Therefore in spite of its simple
proof and its close relationship to the more well-known
representer theorem, we shall formally state it here as an
independent theorem for future reference.

In our framework, thedata graphconsists of nodes
that are the data pointsXj. The edge connecting two
nodesXi and Xj is weighted byk(Xi, Xj), where
the kernel functionk(·, ·) is defined over the graph
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nodes. The theorem essentially implies that a formulation
of graph-based semi-supervised learning is equivalent
to the supervised learning method which employs the
same kernel. It establishes the transductive graph kernel
learning formulation we will study in this paper. As a
consequence, we can extend the graph (and the kernel
matrix) by including extra points without changing the
results on the existing points.

Theorem 3.1 (Graph Kernel Learning):Consider la-
beled data{(Xi, Yi)}i=1,...,n and unlabeled dataXj

(j = n + 1, . . . ,m). Consider real-valued vectorsf =
[f1, . . . , fm]T ∈ Rm, and the following semi-supervised
learning method:

f̂ = arg inf
f∈Rm

[

1

n

n
∑

i=1

L(fi, Yi) + λfTK−1f

]

, (5)

whereK is anm ×m matrix with Ki,j = k(Xi, Xj).
Let H be the RKHS ofk, and p̂ be the solution of (3),
then

f̂j = p̂(Xj) (j = 1, . . . ,m).

Proof: At the optimal solution of (5), we have the
following first-order optimality equation (for example,
see [12]):

1

n
L′

1(f̂i, Yi) + 2λ[K−1f̂ ]i = 0 (i = 1, . . . , n),

2λ[K−1f̂ ]j = 0 (j = n+ 1, . . . ,m).

whereL′
1(a, b) denotes a sub-gradient ofL with respect

to the first component, and[K−1f̂ ]i denotes thei-th
component of them-dimensional vectorK−1f̂ . Now
we can letα̂i = −L′

1(f̂i, Yi)/(2λn) for i = 1, . . . , n,
and α̂j = 0 for j = n + 1, . . . ,m. Substituting the
representation into the first-order condition, we obtain
a representation of̂f as:

f̂ = Kα̂, s.t. α̂j = 0 (j = n+ 1, . . . ,m)

Using this representation in (5), we obtain the following
equivalent optimization problem:

f̂ = Kα̂,

α̂ = arg inf
α∈Rm

[

1

n

n
∑

i=1

L([Kα]i, Yi) + λαTKα

]

s.t.αj = 0 (j = n+ 1, . . . ,m).

It is easy to check that this optimization problem is
equivalent to (4) withf̂j = [Kα̂]j = p̂(Xj).

It is worth mentioning that in the theorem, while the
kernel functionk(·, ·) is typically defined everywhere
on the input space, the Gram matrixK only needs

to be defined on the graph. Note thatK is always
positive semi-definite. However, there are two scenarios
that require special interpretation:

• K is not full rank (singular): the correct interpreta-
tion of fTK−1f is limµ→0+ fT (K+µIm×m)−1f ,
whereIm×m is them × m identity matrix. If we
start with a given kernelk and letK = [k(Xi, Xj)],
then a semi-supervised learning method of the form
(5) is equivalent to the supervised method (3).

• R = K−1 is not full rank: in this case, we need
an extension of (5), where we replaceL(fi, Yi) by
L(fi + Bhi, Yi) with B the null-space ofR, and
takeK to be the pseudo-inverse ofR. In this case,
the Bh component is unregularized. Similarly we
should include an unregularized component in (3)
and (4). For simplicity, we will not consider this
case here.

Observe that if we start with a given kernelk and
let K = [k(Xi, Xj)], then the semi-supervised learning
method in the form of (5) is equivalent to the supervised
method (3). It follows that for a formulation like (5), one
should utilize the unlabeled data to replaceK by a kernel
K̄ in (5), or k by k̄ in (4). There are various ways to
achieve this. For example, one may use unlabeled data to
derive better generalization performance bounds, which
can then be used to select a kernel from a set of kernels
to optimize the bound.

The effect of semi-supervised learning can also be
achieved with the following two stage procedure:

• Use unlabeled data to design a kernelk̄(·, ·).
• Replacek(·, ·) by k̄(·, ·) in the supervised formula

(4).
In other words, the benefit of unlabeled data in this
setting is to construct a good kernel based on unlabeled
data. At first, this seems strange as it is not clear why
one has to design a kernel based on the unlabeled
data. However, we will later show that under some
assumptions, this is a sensible thing to do.

Some of the previous graph-based semi-supervised
learning studies employ the same formulation (5) with
K−1 replaced by the graph Laplacian operatorL. We
only consider the normalized version here:

fTLf =αfT f +
1

2

m
∑

i,j=1

k(xi, xj)

(

fi√
di

− fj
√

dj

)2

=fT [(1 + α)I −D−1/2KD−1/2]f,

where di =
∑m

j=1 k(xi, xj) (i = 1, . . . ,m), and
D = diag({di}). The transformD−1/2KD−1/2 is to
normalize the kernelK such that the eigenvalues are in
[0, 1]. The parameterα > 0 is used to ensure that the
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Laplacian kernelK̄ = ((1 + α)I − D−1/2KD−1/2)−1

is positive definite (see [17]).
The equivalence of the graph Laplacian formulation

and supervised kernel learning (with kernel matrixK̄ =
L−1) was not explicitly discussed in the earlier studies.
We will show that this equivalence is important for
good theoretical understanding because it clarifies the
role of unlabeled data and simplifies the analysis (as we
will see later in the paper). Based on this formulation,
our focus is to understand the behavior of different
kernels, and why one kernel is preferred to another.
Moreover, by treating graph-based supervised learning as
unsupervised kernel-design (see Figure 1), we essentially
consider a setting more general than graph Laplacian
based methods.

Based on the above discussion, we shall focus on
the following unsupervised kernel design-based semi-
supervised learning. Although some of the previously
proposed graph methods are variants of this algorithm,
our analysis still provides useful insights.

In Figure 1, we consider a general formulation of
semi-supervised learning on data graphs through spectral
kernel design. As a special case, we can letsj = g(µj)
in Figure 1, whereg is a rational function, and then
K̄ = g(K/m)K. In this special case, we do not have
to compute the eigen-decomposition ofK. Therefore
we obtain a simpler algorithm with the(∗) in Figure 1
replaced by

K̄ = g(K/m)K. (6)

The algorithm is described in Figure 2. The functiong(·)
can be regarded as a filter function which modifies the
spectral of the kernel.

As mentioned earlier, the idea of using spectral kernel
design has appeared in [5] although they did not base
their method on the graph formulation (5). In [19],
the spectrum of a graph Laplacian was modified to
maximize kernel alignment. Although the idea is related,
the procedure proposed there is not directly comparable
to ours. The semi-supervised learning methods described
in Figure 1 or Figure 2 are effective only when̂f ′ is a
better predictor than̂f in Theorem 3.1; in other words,
when the new kernel̄K is better thanK. In order to gain
a good understanding of the behavior of the algorithms,
we are interested in the casem → ∞. Therefore in the
next few sections, we investigate the following issues:

• The limiting behavior off̂ ′ in the algorithms as
m→ ∞; that is, whetherf̂ ′

j converges for eachj.
• Generalization performance of (5).
• Optimal kernel design by minimizing generalization

error, and its implications.
• Statistical models under which spectral kernel

design-based semi-supervised learning is effective.

IV. FEATURE-SPACEFORMULATIONS

We want to show that asm→ ∞, the semi-supervised
algorithm in Figure 1 is well-behaved. That is,f̂ ′

j con-
verges asm→ ∞. This is one of the most fundamental
issues concerning the semi-supervised learning algorithm
proposed in Section III. For example, related issues for
the graph Laplacian have been investigated recently in
[3], [6]–[8]. Their results depend on geometric properties
of the graph Laplacian, and require the existence of a
continuous Laplacian on a well-defined manifold, from
which the data are drawn. Due to the more specific
assumptions employed, their results cannot be applied
to our problem. The analysis presented here relies only
on some basic algebraic properties of graph learning.
Therefore it applies to situations more general than the
graph Laplacian studied earlier. However, our analysis
cannot provide any geometric meaning for the limiting
solution that the semi-supervised algorithm converges to.

Technically, the behavior at largem is easier to under-
stand when we consider the feature space representation,
which we shall introduce below. Note that this represen-
tation is given here only for the sake of analysis and not
for computational purposes. It is well-known that kernel
classifiers are equivalent to linear classifiers with data
embedded into a high dimensional spaceF (possibly
infinite dimensional), which we call feature space. There
is a feature representationψ(x) ∈ F associated with
each data pointx such thatk(x, x′) = ψ(x)Tψ(x′),
where we use the standard linear algebra notation on the
feature space, and consider features inF to be column
vectors. In this setting, each functionp(·) ∈ H can be
regarded as a linear classifier onF with weight vectorw,
such thatp(x) = wTψ(x) for all x, and‖p‖2

H = wTw.
It is not difficult to show that the condition‖p‖2

H =
wTw implies other properties described above. Therefore
for reference, we shall introduce the following definition
of feature space.

Definition 4.1: A feature spaceF for H is a vector
representation such that each functionp(·) ∈ H corre-
sponds to a weight vectorwp ∈ F and‖p‖2

H = wT
p wp.

For each data pointx, we define its feature representation
asψ(x) = wk(x,·).

It is not hard to see that such a feature space exists.
Let B be a complete orthonormal basis forH, then for
eachp ∈ H , its coordinate with respect toB forms a
feature vector. One may also loosely regardH itself as
the feature space. However, it is convenient to distinguish
F from H so that we can work with standard linear
algebra notation.
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Input: labeled data[(Xi, Yi)]i=1,...,n

unlabeled dataXj (j = n+ 1, . . . ,m)
kernel functionk(·, ·)
shrinkage factorssj ≥ 0 (j = 1, . . . ,m)

Output: predictive valueŝf ′
j onXj (j = 1, . . . ,m)

Form the kernel matrixK = [k(Xi, Xj)] (i, j = 1, . . . ,m)
Compute the kernel eigen-decomposition:

K = m
∑m

j=1 µjvjv
T
j , where(µj , vj) are eigenpairs ofK (vT

j vj = 1)
Modify the kernel matrix as:

K̄ = m
∑m

j=1 sjµjvjv
T
j (∗)

Compute
f̂ ′ = arg inff∈Rm

[

1
n

∑n
i=1 L(fi, Yi) + λfT K̄−1f

]

.

Fig. 1. Spectral kernel design based semi-supervised learning on graph

Input: labeled data[(Xi, Yi)]i=1,...,n

unlabeled dataXj (j = n+ 1, . . . ,m)
kernel functionk(·, ·)
shrinkage functiong(·)

Output: predictive valueŝf ′
j on Xj (j = 1, . . . ,m)

Form the kernel matrixK = [k(Xi, Xj)] (i, j = 1, . . . ,m)
Compute

f̂ ′ = arg inff∈Rm

[

1
n

∑n
i=1 L(fi, Yi) + λfTK−1g(K/m)−1f

]

.

Fig. 2. Spectral filter design based semi-supervised learning on graph

Using the feature space representation, equation (3) is
equivalent to

p̂(x) =ŵTψ(x)

ŵ =arg inf
w∈F

[

1

n

n
∑

i=1

L(wTψ(Xi), Yi) + λwTw

]

.

(7)

In this setting, a change of kernel can be regarded
as a change of feature space. In particular, letS be a
positive semi-definite matrix onF . We may consider
the following estimation method:

p̂(x) =ŵTS1/2ψ(x)

ŵ =arg inf
w∈F

[

1

n

n
∑

i=1

L(wTS1/2ψ(Xi), Yi) + λwTw

]

,

(8)

which changes the feature vectors fromψ(x) to ψ′(x) =
S1/2ψ(x). It is easy to see that this method is equivalent

to a change of kernel fromk(x, x′) = ψ(x)Tψ(x′) to
ψ′(x)Tψ′(x′) = ψ(x)TSψ(x′).

Our goal is to constructS so that (8) is equivalent
to the graph-based semi-supervised learning methods
in Section III. The re-formulation is useful since it is
more convenient to study the asymptotic behavior of
the S operator whenm → ∞ under the feature space
representation (instead of the graph representation). This
is because the graphs in Section III grow whenm
increases, while the feature spaceF remains the same.

The analysis given in this section is closely related to
kernel principal component analysis. We still consider
dataXi for i = 1, . . . ,m. let Ψ = [ψ(X1), . . . , ψ(Xm)].
Using this notation, the kernel matrix onXi (i =
1, . . . ,m) can be represented asK = ΨT Ψ. We shall
design the matrixS in (8) based on the spectral de-
composition ofK. It can be seen that the spectral
decomposition ofΨΨT is closely related to that ofK:
if µ > 0, then (µ, v) is an eigen-pair ofΨT Ψ implies
that (µ,Ψv/

√
µ) is an eigen-pair ofΨΨT .
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Lemma 4.1:Consider K = ΨT Ψ, where Ψ =
[ψ(X1), . . . , ψ(Xm)] ∈ Fm. Let K = m

∑

j µjvjv
T
j

be its spectral-decomposition with eigenvaluesmµj > 0
(vT

j vj = 1). Let uj = Ψvj/
√
mµj , then we have

spectral decompositionΨΨT = m
∑

j µjuju
T
j . Let

S =
∑m

j=1 sjuju
T
j and K̄ = m

∑m
j=1 sjµjvjv

T
j , then

K̄i,j = ψ(Xi)
TSψ(Xj).

Proof: Observe thatKvj = mµjvj implies that
(ΨΨT )Ψvj = ΨKvj = mµjΨvj , which implies that
uj is an eigenvector ofΨΨT with eigenvaluemµj . We
also have the following decomposition:

(ΨΨT )2 =ΨKΨT = m
∑

j

µj(Ψvj)(v
T
j ΨT )

=m2
∑

j

µ2
juju

T
j .

This implies that we have the spectral decomposition
ΨΨT = m

∑

j µjuju
T
j . Now we useKvj = mµjvj to

obtain:

K̄ =m

m
∑

j=1

sjµjvjv
T
j =

m
∑

j=1

sj(Kvj)(Kvj)
T /(mµj)

=

m
∑

j=1

sj(Ψ
T Ψvj)(Ψ

T Ψvj)
T /(mµj)

=

m
∑

j=1

sj(Ψ
Tuj)(Ψ

Tuj)
T = ΨTSΨ.

This proves the second part of the lemma.

Using this lemma, we can obtain the feature space
equivalence of Figure 1 and Figure 2. They are given in
Figure 3 and Figure 4 respectively.

Theorem 4.1:Let k(x, x′) = ψ(x)Tψ(x′). Then Fig-
ure 2 and Figure 4 are equivalent:̂f ′

j = p̂′(Xj) (j =
1, . . . ,m). Moreover, if in Figure 1 and Figure 3, we use
eigenvectorsuj = Ψvj/

√
mµj , then the two algorithms

are equivalent:̂f ′
j = p̂′(Xj) (j = 1, . . . ,m).

Proof: The first half of the theorem follows from
the second half. To see this, we may letsj = g(µj)
anduj = Ψvj/

√
mµj . Hence by Lemma 4.1, we have

S = g(ΨΨT/m) =
∑

j g(µj)uju
T
j =

∑

j sjuju
T
j in

Figure 4. This is consistent with the definition ofsj in
Figure 2.

Therefore we only need to prove the second part.
Based on the discussion after (8), we know that the solu-
tion of Figure 3 is equivalent to the solution of (4) with
the kernelk(x, x′) replaced bȳk(x, x′) = ψ(x)TSψ(x′).
By Theorem 3.1, on the data-graph, the solution is given

by (5) with the kernel Gram matrixK replaced by

K̄ =ΨTSΨ =
∑

j

sjΨ
Tuju

T
j Ψ

=
∑

j

sj(Kvj/
√
mµj)(Kvj/

√
mµj)

T

=m
∑

j

sjµjvjv
T
j ,

which is consistent with the definition in Figure 1. This
proves the second part of the theorem.

From the reformulation of Figure 2 as Figure 4
(and Figure 1 as Figure 3), we can easily under-
stand the asymptotic behavior of these algorithms when
m → ∞. In this case, we just replaceΨΨT /m =
1
m

∑m
j=1 ψ(Xj)ψ(Xj)

T by EXψ(X)ψ(X)T . The spec-
tral decomposition ofEXψ(X)ψ(X)T corresponds to
the feature space PCA. It is clear that ifS converges,
then the feature space algorithm Figure 4 also converges,
which immediately implies the convergence of the solu-
tion of Figure 2. We state the following result, which
is self-evident. It shows that under mild conditions, the
semi-supervised learning methods in Figure 4 and in
Figure 2 are well behaved whenm→ ∞.

Theorem 4.2:Consider a sequence of data
X1, X2, . . . drawn from a distribution, with only
the first n points labeled. Assume whenm → ∞,
∑m

j=1 ψ(Xj)ψ(Xj)
T /m converges toEXψ(X)ψ(X)T

almost surely, andg(·) is a continuous function in the
spectral range ofEXψ(X)ψ(X)T . Then the following
claims hold for Figure 4:

• S converges almost surely tog(EXψ(X)ψ(X)T ).
• ψ̄(x) converges almost surely to
g(EXψ(X)ψ(X)T )1/2ψ(x).

• p̂′ converges almost surely.
• With kernel k(x, x′) = ψ(x)Tψ(x′) in Figure 2,
f̂j = p̂′(Xj) converges almost surely.

The theorem says that in the limit, the semi-supervised
learning procedure is well-behaved in that the solution
converges to a well-defined solution in (8) with a well-
defined S. However, the geometric meaning of the
operatorS is not examined here. The assumption that
∑m

j=1 ψ(Xj)ψ(Xj)
T /m converges toEXψ(X)ψ(X)T

almost surely is rather mild. It is essentially a conse-
quence of the strong law of large numbers on vector
spaces. Note also that statements similar to those of
Theorem 4.2 hold for Figure 3 and Figure 1 as well. In
this case,S converges if the eigenvectorsuj converge
and the shrinkage factorssj are bounded.
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Input: labeled data[(Xi, Yi)]i=1,...,n

unlabeled dataXj (j = n+ 1, . . . ,m)
feature mapψ(x) ∈ F
shrinkage factorssj ≥ 0 (j = 1, . . . ,m)

Output: predictive function̂p′(x)

Let Ψ = [ψ(X1), . . . , ψ(Xm)]
Compute the feature-space eigen-decomposition:

ΨΨT/m =
∑m

j=1 µjuju
T
j , where(µj , uj) are eigenpairs ofΨΨT (uT

j uj = 1)
Define

S =
∑m

j=1 sjuju
T
j , andψ̄(x) = S1/2ψ(x)

Solve
ŵ′ = arg infw∈F

[

1
n

∑n
i=1 L(wT ψ̄(Xi), Yi) + λwTw

]

Let p̂′(x) = ŵ′T ψ̄(x)

Fig. 3. Spectral kernel design based semi-supervised learning on feature space

Input: labeled data[(Xi, Yi)]i=1,...,n

unlabeled dataXj (j = n+ 1, . . . ,m)
feature mapψ(x) ∈ F
shrinkage factorssj ≥ 0 (j = 1, . . . ,m)

Output: predictive function̂p′(x)

Let Ψ = [ψ(X1), . . . , ψ(Xm)]
Define

S = g(ΨΨT/m) , andψ̄(x) = S1/2ψ(x)
Solve

ŵ′ = arg infw∈F

[

1
n

∑n
i=1 L(wT ψ̄(Xi), Yi) + λwTw

]

Let p̂′(x) = ŵ′T ψ̄(x)

Fig. 4. Spectral filter design based semi-supervised learning on feature space

V. GENERALIZATION ANALYSIS ON GRAPHS

In this section, we study the generalization behavior of
the graph-based semi-supervised learning algorithm (5),
and use it to compare different kernels. We will then use
this bound to justify the kernel design method given in
Section III.

To measure the sample complexity, we considerm
points (Xj , Yj) for i = 1, . . . ,m. We randomly pickn
distinct integersi1, . . . , in from {1, . . . ,m} uniformly
(sample without replacement), and regard it as then
labeled training data. We obtain predictive valuesf̂j

on the graph using the semi-supervised learning method
(5) with the labeled data, and test it on the remaining
data (that are not included in the training data). We are
interested in the average predictive performance over all
random draws.

For clarity, we use a simple complexity analysis and
compare expected generalization behavior. We focus on
revealing the right quantities that determine the learning
complexity, instead of trying to obtain the tightest and
most general bound. The proof is given in the Appendix.

Theorem 5.1:Consider(Xj , Yj) for i = 1, . . . ,m.
Assume that we randomly pickn distinct integers
i1, . . . , in from {1, . . . ,m} uniformly (sample without
replacement), and denote it byZn. Let f̂(Zn) be the
semi-supervised learning method (5) using training data
in Zn:

f̂(Zn) = arg inf
f∈Rm

[

1

n

∑

i∈Zn

L(fi, Yi) + λfTK−1f

]

.

If |L′
1(p, y)| = | ∂

∂pL(p, y)| ≤ γ, andL(p, y) is convex

7



with respect top, then we have

EZn

1

m− n

∑

j /∈Zn

L(f̂j(Zn), Yj)

≤ inf
f∈Rm





1

m

m
∑

j=1

L(fj, Yj) + λfTK−1f +
γ2tr(K)

2λnm



 .

The complexity term in Theorem 5.1 relies on the
quantity tr(K/λn), which has appeared previously in
the literature on related problems (for example, [9]).
We should note that the bound in Theorem 5.1 is not
necessarily optimal. For example, for the least squares
method or logistic regression, a more refined quantity
tr((K + λnI)−1K) was suggested in [16]. It is shown
that for many problems, the refined quantity leads to
the optimal rate of convergence. However, the bound in
Theorem 5.1 is simpler and easier to work with. We are
mainly interested in whether we can use it to explain
the effectiveness of kernel design methods, and what
are the implications of the bound. As we shall show in
Section VII, the bound leads to observable consequences
in practical applications. Therefore the analysis given
here is adequate for our purpose (although refinements
are possible).

The bound in Theorem 5.1 depends on the regulariza-
tion parameterλ in addition to the kernelK. In order
to compare different kernels, we shall compare bounds
with the optimalλ for eachK. That is, in addition to
minimizingf , we also minimize overλ on the right hand
of the bound. Note that in practice, it is often possible to
find a near-optimalλ through cross validation when the
amount of training data is not too small. This implies
that assuming the optimalλ in the bound is reasonable
for many practical problems. With optimalλ, we obtain:

Corollary 5.1: Under the conditions of Theorem 5.1,
assume that we are given the optimalλ. Then:

EZn

1

m− n

∑

j /∈Zn

L(f̂j(Zn), Yj)

≤ inf
f∈Rm





1

m

m
∑

j=1

L(fj , Yj) +
γ√
2n

√

R(f,K)



 ,

where
R(f,K) = tr(K/m) fTK−1f

is the complexity off with respect to kernelK.

If we defineK̄ as in Figure 1, then the complexity of

a functionf with respect toK̄ is given by

R(f, K̄) =





m
∑

j=1

sjµj









m
∑

j=1

α2
j/(sjµj)



 .

If we believe that a good approximate target functionf
can be expressed asf =

∑

j αjvj with |αj | ≤ βj for
some knownβj , then based on this belief, the optimal
choice (according to the bound) of the shrinkage factor
becomessj = βj/µj. That is, we use a kernel

K̄ =
∑

j

βjvjv
T
j ,

where vj are normalized eigenvectors ofK. In this
case, we haveR(f, K̄) ≤ (

∑

j βj)
2. The eigenvalues

of the optimal kernel is thus independent ofK, but
depends only on the spectral coefficient’s rangeβj of
the approximate target function.

Since there is no reason to believe that the eigenvalues
µj of the original kernelK are proportional to the target
spectral coefficient range, if we have some guess of
the spectral coefficients of the target, then one may use
this knowledge to obtain a better kernel. This justifies
why spectral kernel design-based algorithms can be
potentially helpful (when we have some information on
the target spectral coefficients). In practice, it is usually
difficult to have a precise guess ofβj . However, for many
applications, we observe in practice that the eigenvalues
of kernelK decays slower than that of the target spectral
coefficients. In this case, our analysis implies that we
should use an alternative kernel with faster eigenvalue
decay: for example, usingK2 instead ofK. This has
a dimension reduction effect. That is, we effectively
project the data into the principal components of data.
The intuition why this helps is also quite clear: if the
dimension of the target function is small (spectral coef-
ficient decays fast), then we should project data to those
dimensions by reducing the remaining noisy dimensions
(corresponding to fast kernel eigenvalue decay).

In the next section, we use a statistical model to
illustrate why in practical problems, the spectral coef-
ficients of the target function often decay faster than the
eigenvalues of a natural kernelK. In essence, this is due
to the fact that the input vector is often corrupted with
small amounts of noise. Such noise does not significantly
affect the target spectral coefficients, but will flattens the
eigenvalues ofK.

VI. SPECTRAL ANALYSIS

We provide a justification of why spectral coefficients
of the target function often decay faster than the eigen-
values of a natural kernelK. In essence, this is due to
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the fact that an input vectorX is often corrupted with
noise. Together with results in the previous section, we
know that in order to achieve optimal performance, we
may use a kernel with faster eigenvalue decay.

In this section we consider the feature space rep-
resentation. We show that when the input feature is
corrupted with small amounts of random noise, then the
eigenvalues ofK will become flatter, while the spectral
coefficients of a reasonable target function will be less
affected.

A. Input noise model

We consider a statistical model using the feature space
notation in Section IV. For simplicity, we assume that
ψ(x) = x. The model we consider here assumes that
noise is added to the feature vectorx. It is worth
mentioning that although this model is justifiable for
the linear kernelk(x, x′) = xTx, it may not be the
most appropriate model for nonlinear kernels. However,
we believe the analysis still provides useful insights for
such kernels, although a more complete analysis requires
further investigation.

We consider a two-class classification problem inR∞

(with the standard 2-norm inner-product), where the
label Y = ±1. We first start with a noise free model,
where the data can be partitioned intop clusters. Each
clusterℓ is composed of a single center pointx̄ℓ (having
zero variance) with label̄yℓ = ±1. In this model, assume
that the centers are well separated so that there is a
weight vectorw∗ such thatwT

∗ w∗ <∞ andwT
∗ x̄ℓ = ȳℓ.

Without loss of generality, we may assume thatx̄ℓ and
w∗ belong to ap-dimensional subspaceVp. Let V ⊥

p be
its orthogonal complement.

Assume now that the observed input data are corrupted
with noise. We first generate a center indexℓ, and
then noiseδ (which may depend onℓ). The observed
input data is the corrupted dataX = x̄ℓ + δ, and
the observed output isY = wT

∗ x̄ℓ. In this model, let
ℓ(Xi) be the center corresponding toXi, the observation
can be decomposed as:Xi = x̄ℓ(Xi) + δ(Xi), and
Yi = wT

∗ x̄ℓ(Xi). Given noiseδ, we decompose it as
δ = δ1 + δ2 where δ1 is the orthogonal projection of
δ in Vp, and δ2 is the orthogonal projection ofδ in
V ⊥

p . We assume thatδ1 is a small noise component;
the componentδ2 can be large but has small variance in
every direction.

B. Analysis

Under the model in Section VI-A, we have the fol-
lowing result.

Theorem 6.1:Consider the data generation model in
Section VI-A, with observationX = x̄ℓ + δ and Y =
wT

∗ x̄ℓ. Assume thatδ is conditionally zero-mean given
ℓ: Eδ|ℓδ = 0. Let EXXT =

∑

j µjuju
T
j be the spectral

decomposition with decreasing eigenvaluesµj (uT
j uj =

1). Then the following claims are valid:
• Let σ2

1 ≥ σ2
2 ≥ · · · be the eigenvalues of the noise

covariance matrixEδ2δT
2 , thenµj ≥ σ2

j .
• If ‖δ1‖2 ≤ b/‖w∗‖2, then |wT

∗ Xi − Yi| ≤ b.
• If wT

∗ (E x̄ℓx̄
T
ℓ )−tw∗ < ∞ for some t ≥ 0, then

∑

j≥1(w
T
∗ uj)

2µ−t
j ≤ wT

∗ (E x̄ℓx̄
T
ℓ )−tw∗.

Proof: The conditional zero-mean of noise implies
that

EXXT = Ex̄ℓx̄
T
ℓ + EδδT .

Given an arbitraryj dimensional subspaceV , by the
minimax principle for intermediate eigenvalues, we have
the following inequality:µj ≥ infv∈V v

T
EXXTv/vT v.

Now we can takeV to be thej-dimensional subspace
spanned by the largestj eigenvectors ofEδ2δT

2 . Since
δ2 ∈ V ⊥

p , it is clear thatV ∈ V ⊥
p ; therefore∀v ∈ V ,

vT δ = vT δ2 andvT x̄ℓ = 0. We thus have∀v ∈ V :

vT (EXXT )v = E(vT δ2)
2 ≥ vT vσ2

j .

This implies the first claim:µj ≥ σ2
j .

We also have:|wT
∗ Xi − Yi| = |wT

∗ x̄ℓ(Xi) − Yi +
wT

∗ δ(Xi)| = |wT
∗ δ1(Xi)| ≤ ‖w∗‖2‖δ1(Xi)‖2 ≤ b. This

proves the second claim.
Using the following equations
∑

j≥1

(wT
∗ uj)

2/µt
j =wT

∗ (EXXT )−tw∗

=wT
∗ (Ex̄ℓx̄

T
ℓ + EδδT )−tw∗

≤wT
∗ (Ex̄ℓx̄

T
ℓ )−tw∗,

we obtain the third claim.
In order to relate the above theorem to kernel design

methods on graphs, we may use the following simple
result.

Proposition 6.1:Considerm pointsX1, . . . , Xm. Let
Ψ = [X1, . . . , Xm], K = ΨT Ψ, and let its spectral
decomposition beK = m

∑

j µjvjv
T
j . Let fi = wT

∗ Xi,
and let f =

∑

j αjvj , thenαj =
√
mµjw

T
∗ uj , where

uj = Ψvj/
√
mµj.

Proof: We have αj = fT vj = wT
∗ Ψvj =√

mµjw
T
∗ uj.

This proposition implies that if we assume that asymp-
totically 1

m

∑m
i=1XiX

T
i → EXXT , then we have the

following consequences from Theorem 6.1:
• fi = wT

∗ Xi is a good approximate target whenb
is small. In particular, ifb < 1, then this function
always gives the correct class label.
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• The spectral coefficientsαj of f decays as

1

m

m
∑

j=1

α2
j/µ

1+t
j ≤ wT

∗ (Ex̄ℓx̄
T
ℓ )−tw∗.

That is, on average, target coefficientsαj decay at
least as fast as the1+t

2 -th power of the eigenval-
uesµj of K/m, if wT

∗ (Ex̄ℓx̄
T
ℓ )−tw∗ is bounded.

Thereforeαj decays faster thanµj (on average) if
t > 1.

• The eigenvalueµj can decay slowly when the noise
spectral decays slowly:µj ≥ σ2

j . This slow decay
is caused by noise in the feature vectors.

In summary, our analysis implies that if the clean
data is well behaved, in the sense that we can find a
target weight vectorw∗ such thatwT

∗ (Ex̄ℓx̄
T
ℓ )−tw∗ is

bounded for somet > 1, then when the observed data
are corrupted with noise, we can find a good approximate
target functionf with spectral coefficients decaying
faster than the eigenvalues of the kernel matrix.

C. Spectral kernel design

We showed that if the input data is corrupted with
noise, then the spectral coefficient of the target function
is likely to decay faster than that of the original kernel.
It is thus helpful to use a kernel with faster spectral
decay. For example, instead of usingK, we may use
K2. However, it is may not be easy to estimate the
exact decay rate of the target spectral coefficients. In
practice, one may use cross validation to optimize the
kernel. Another approach is to optimize a learning bound
(e.g. Theorem 5.1), which may lead to semi-definite
programming formulations [9].

A kernel with fast spectral decay projects the data into
the most prominent principal components. Therefore in
this paper, we are interested in designing kernels which
can achieve a dimension reduction effect. Although one
may use direct eigenvalue computation, an alternative is
to use a filter functiong(K/m)K, as in Figure 2. For
example, we may consider normalized kernel such that
K/m =

∑

j µjuju
T
j where 0 ≤ uj ≤ 1. A standard

normalization method is to useD−1/2KD−1/2, where
D is the diagonal matrix with each entry corresponding
to the row sums ofK.

It follows thatg(K/m)K = m
∑

j g(µj)µjuju
T
j . We

are interested in a functiong such thatg(µ)µ ≈ 1 when
µ ∈ [α, 1] for someα, and g(µ)µ ≈ 0 when µ < α
(where α is close to 1). One such function is to let
g(µ)µ = (1−α)/(1−αµ). This is the function used in
various graph Laplacian formulations with normalized
Gaussian kernel as the initial kernelK. For example,

see [17]. The functiong(µ) is plotted against1 − µ
in Figure 5 (with α = 0.9, 0.99, 0.999). Our analysis
suggests that it is the dimension reduction effect of this
function that is important, rather than the connection to
the graph Laplacian. As we shall see in the empirical
examples, other kernels such asK2, which achieve
similar dimension reduction effect (but have nothing to
do with the graph Laplacian), also improve performance.
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Fig. 5. (1 − α)/(1 − αµ) versus1 − µ.

VII. E XPERIMENTS

This section uses empirical examples to demonstrate
some consequences of our theoretical analysis. We shall
use the MNIST data set and the 20newsgroup data set,
both of which are commonly used by graph-based semi-
supervised learning researchers.

A. Data

The MNIST data set1 consists of hand-written digit
image data (representing 10 classes, from digit “0” to
“9”). The 20newsgroup data set consists of documents
from 20 newsgroups (representing 20 classes ranging
over a variety of topics – computer hardware, sports, and
so on). In pre-processing, we removed the header lines
(subjects, newsgroup names, senders, and so forth) and
common stop words. We use the standard TFIDF term
weighting to represent data points. On both data sets,
we randomly drawm = 2000 samples, and then regard
n = 100 of them as labeled data, and the remaining
m− n = 1900 as unlabeled test data.

1http://yann.lecun.com/exdb/mnist/
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B. Tested methods

For simplicity, we use the squared lossL(p, y) =
(p− y)2 throughout the experiments since the resulting
formulation has a closed form solution. The method can
be handled by a refined version of Theorem 5.1, which
leads to the same conclusions as those of Section VI.

We study the performance of various kernel design
methods by changing the spectral coefficients of the
initial Gram matrixK, as in Figure 1. Below we writēµi

for the new spectral coefficient of the new Gram matrix
K̄: i.e., K̄ =

∑m
i=1 µ̄iviv

T
i . We study the following

kernel design methods (also see [5]), with a dimension
cut off parameterd, so thatµ̄i = 0 when i > d.

• [1, . . . , 1, 0, . . . , 0]: sets the firstd coefficients to1
and the rest to zero:

µ̄i =

{

1 if i ≤ d
0 otherwise

This was used in spectral clustering [11].
• TruncatedK:

µ̄i =

{

µi if i ≤ d
0 otherwise

This method is essentially kernel principal compo-
nent analysis which keeps thed most significant
principal components ofK.

• Kp: sets the coefficients to thep-th power of the
initial coefficients:

µ̄i =

{

µp
i if i ≤ d

0 otherwise

We setp = 2, 3, 4. This accelerates the decay of
eigenvalues ofK.

• Inverse:

µ̄i =

{

1/(1 − ρµi/µ1) if i ≤ d
0 otherwise

ρ is a constant close to 1 (we used 0.999). When
the kernel is normalized byD−1/2WD−1/2, this is
essentially graph Laplacian based semi-supervised
learning (e.g., see [17]). However, the unnormal-
ized graph Laplacian regularization, corresponding
to unnormalized kernels, is typically defined as
D − W . It does not correspond to the inverse
transformation ofW defined here.
Also note that the graph Laplacian formulation
sometimes setsd = m.

• Y :

µ̄i =

{

|Y T vi| if i ≤ d
0 otherwise

This is the oracle kernel that optimizes our gener-
alization bound. The purpose of testing this oracle

method is to validate our analysis by checking
whether a good kernel in our theory actually pro-
duces good classification performance on real data.
Note that in the figures of spectral coefficients we
show averaged̄µi over all the classes.

C. Results

Figure 6 shows the spectral coefficients of the above
mentioned kernel design methods and the corresponding
classification performance on the MNIST data set. The
initial kernel is normalized 25-NN, which is defined as
K = 1

2D
−1/2(D + W )D−1/2 (see previous section),

where for two nodesi 6= j, Wij = 1 if either the i-th
example is one of the 25 nearest neighbors of thej-th
example or vice versa; andWij = 0 otherwise. Note that
D +W has non-negative eigenvalues. As expected, the
results demonstrate that the target spectral coefficients
‘Y ’ decay faster than that of the original kernelK.
Therefore it is useful to use kernel design methods that
accelerate the eigenvalue decay. The accuracy plot on
the right is consistent with our theory. The oracle kernel
‘Y ’ performs well especially when the dimension cut-
off is large. With appropriate dimensiond, all methods
perform better than the supervised base-line (originalK)
which is below65%. With appropriate dimension cut-
off, all methods perform similarly (over80%). However,
Kp with (p = 2, 3, 4) is less sensitive to the cut-off
dimensiond than the kernel principal component dimen-
sion reduction methodK. Moreover, the hard threshold
method in spectral clustering ([1, . . . , 1, 0, . . . , 0]) is not
stable.

Similar behavior can also be observed with other
initial kernels. Figure 7 shows the classification accuracy
with the standard Gaussian kernel as the initial kernel
K, both with and without normalization, on MNIST.
We also used different bandwidtht to illustrate that the
behavior of different methods are similar with different
t (in a reasonable range). However, we did not try to
optimizet. Although for unnormalized kernels, “inverse”
is not Laplacian, we include it for completeness. We
also observe that “inverse” is more sensitive to the
bandwidth t (and more generally, the initial kernel)
than other methods. This is because it requires many
eigenvalues of the initial kernel to be close to the
largest eigenvalue to achieve good eigenvalue decay
behavior. Again, we observe that the oracle method
performs extremely well. The spectral clustering kernel
is sensitive to the cut-off dimension, whileKp with
p = 2, 3, 4 are quite stable. The standard kernel principal
component dimension reduction (methodK) performs
very well with appropriately chosen dimension cut-off.
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Coefficients: normalized 25NN, MNIST
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Fig. 6. MNIST. Left: spectral coefficients; right: classification accuracy. Initial kernel is normalized 25-NN kernel.

The unnormalized 25-NN kernel results (Figure 10) also
show the similar trend. The experiments are consistent
with our theoretical analysis.

Essentially similar results can also be observed on the
20newsgroup data set using various initial kernels. In
Figures 11 and 12, the initial kernels are unnormalized
and normalized linear kernel, respectively, which are
often used for text categorization. The initial kernels in
Figure 13 and 14 are unnormalized and normalized 5-
NN, respectively.

The right half of Figure 8 plots the spectral coefficients
for the input data contaminated by random noise. The
noise was generated by randomly choosing and swapping
approximately 10% of pixels. Compared with the case
without noise (the left half of the same figure), we
observe that the random noise ‘flattens’ the eigenvalue
curve (methodK) while it does not affect the target
coefficients ‘Y ’ much. This is in line with our analysis
in Section VI-B. In this case, again, it is useful to use
kernel design methods that accelerate the eigenvalue
decay. As shown in Figure 9, the noise degrades the
performance of the initialK (horizontal line) by 19.1%.
The performance of spectral kernel methods is also
degraded by noise, but the degradation is as small as
10%.

VIII. C ONCLUSION

We investigated a class of graph-based semi-
supervised learning methods. By establishing a graph
formulation of kernel learning, we showed that this
class of semi-supervised learning methods is equivalent
to supervised kernel learning with unsupervised kernel
design (explored in [5]). Our formulation is closely
related to previously proposed graph learning methods
and covers some of them as special cases.

Based on this equivalence formulation, we then stud-
ied various theoretical issues for the proposed methods.
Firstly, we studied the convergence behavior of the
algorithms when the size of unlabeled data set increases.
We showed that the methods are well-behaved in the
limit under appropriate conditions. We then obtained a
generalization bound for graph learning, which we used
to analyze the effect of different kernels. In our analysis
(which is not necessarily tight), the eigenvalues of the
optimal kernel (by minimizing the bound) should decay
at the same rate as the target spectral coefficients. In ad-
dition, we showed that noise added to the input features
can cause the target spectral coefficients to decay faster
than the kernel spectral coefficients. Combined with the
generalization error bound, our analysis implies that it is
helpful to use a kernel with faster spectral decay (than the
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Accuracy, normalized Gaussian, MNIST
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Fig. 7. MNIST. Classification accuracy with Gaussian kernelk(i, j) = exp(−||xi − xj ||
2

2
/t). Left: normalized Gaussian (t = 0.1); right:
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Coefficients: Gaussian, MNIST
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Accuracy, Gaussian, MNIST
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Fig. 9. Noise effect. Classification accuracy with Gaussiankernel. Left: without noise; right: with noise. MNIST.

Coefficients: 25NN, MNIST
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Fig. 10. MNIST. Left: spectral coefficients; right: classification accuracy. Initial kernel is unnormalized 25-NN kernel.
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Coefficients: linear, 20newsgroup
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Fig. 11. 20newsgroup. Left: spectral coefficients; right: classification accuracy. Initial kernel is a linear kernel.

Coefficients: linear, normalized, 20newsgroup
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Fig. 12. 20newsgroup. Left: spectral coefficients; right: classification accuracy. Initial kernel is a normalized linear kernel.
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Coefficients: 5NN, 20newsgroup
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Fig. 13. 20newsgroup. Left: spectral coefficients; right: classification accuracy. Initial kernel is an unnormalized 5-NN kernel.

Coefficients: normalized 5NN, 20newsgroup
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Fig. 14. 20newsgroup. Left: spectral coefficients; right: classification accuracy. Initial kernel is a normalized 5-NNkernel.
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initial kernel). In conclusion, our analysis explains why it
is often helpful to modify the original kernel eigenvalues
to achieve a dimension reduction effect.

Finally we point out that the analysis itself does not
provide any data-dependent generalization bound useful
for selecting or optimizing kernels (such as what was
done in [9]). It only suggests methods to design kernels
with fast eigenvalue decay, but does not indicate which
method is better. How to derive a tight bound for directly
optimizing eigenvalue decay would be an interesting
research direction. Another simpler method, which may
be employed in practice when the number of labeled data
is not too small, is to select from a set of kernels (such
as those suggested in the paper) using cross-validation.

APPENDIX

We prove Theorem 5.1. We shall use the following
notation: letin+1 6= i1, . . . , in be an integer randomly
drawn from {1, . . . ,m} − Zn, and letZn+1 = Zn ∪
{in+1}. Let f̂(Zn+1) be the semi-supervised learning
method (5) using training data inZn+1:

f̂(Zn+1) = arg inf
f∈Rm





1

n

∑

i∈Zn+1

L(fi, Yi) + λfTK−1f



 .

We employ a stability result from [15], which can
be stated in our terminology as:|f̂in+1

(Zn+1) −
f̂in

(Zn)| ≤ |L′
1(f̂in+1

(Zn+1), Yin+1
)|Kin+1,in+1

/(2λn).
This implies that

L(f̂in+1
(Zn), Yin+1

)

≤L(f̂in+1
(Zn+1), Yin+1

) +Kin+1,in+1
γ2/(2λn).

It follows that ∀f ∈ Rm that is not random:

EZn

1

m− n

∑

j /∈Zn

L(f̂j(Zn), Yj)

=EZn+1
L(f̂in+1

(Zn), Yin+1
)

≤EZn+1
[L(f̂in+1

(Zn+1), Yin+1
) +Kin+1,in+1

γ2/(2λn)]

=EZn+1

1

n+ 1

∑

k∈Zn+1

L(f̂k(Zn+1), Yk) +
tr(K)γ2

2λnm

≤ n

n+ 1
EZn+1





1

n

∑

k∈Zn+1

L(fk, Yk) + λfTK−1f





+
tr(K)γ2

2λnm

=





1

m

m
∑

j=1

L(fj , Yj) +
λn

n+ 1
fTK−1f



+
γ2tr(K)

2λnm
.

Rie Johnson (formerly, Rie Kubota Ando) Rie Johnson obtained a
PhD degree in computer science from Cornell University in 2001. She
was a research scientist at IBM T.J. Watson Research Center until 2007.
Her research interests are in machine learning and its applications.

Tong Zhang Tong Zhang received a B.A. in mathematics and computer
science from Cornell University in 1994 and a Ph.D. in Computer
Science from Stanford University in 1998. After graduation, he worked
at IBM T.J. Watson Research Center in Yorktown Heights, New York,
and Yahoo Research in New York city. He is currently an associate
professor of statistics at Rutgers University. His research interests
include machine learning, statistical algorithms, their mathematical
analysis and applications.

17



REFERENCES

[1] Y. Altun, M. Belkin, and D. McAllester. Maximum margin semi-
supervised learning for structured variables. InNIPS’05, 2005.

[2] M. Belkin and P. Niyogi. Semi-supervised learning on Rie-
mannian manifolds. Machine Learning, Special Issue on
Clustering:209–239, 2004.

[3] M. Belkin and P. Niyogi. Towards a theoretical foundation for
Laplacian-based manifold methods. InCOLT’05, pages 486–500,
2005.

[4] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization:
a geometric framework for learning from examples. Technical
Report TR-2004-06, Computer Science, University of Chicago,
2004.

[5] O. Chapelle, J. Weston, and B. Schölkopf. Cluster kernels for
semi-supervised learning. InNIPS, 2003.

[6] E. Gine and V. Koltchinskii. Empirical graph Laplacian approx-
imation of Laplace-Beltrami operators: large sample results. In
The 4th International Conference on High Dimensional Proba-
bility, 2005.

[7] M. Hein. Uniform convergence of adaptive graph-based regular-
ization. In COLT’06, 2006.

[8] M. Hein, J.-Y. Audibert, and U. von Luxburg. From graphs
to manifolds – weak and strong pointwise consistency of graph
Laplacians. InCOLT’05, pages 470–485, 2005.

[9] G. Lanckriet, N. Cristianini, L. Ghaoui, P. Bartlett, and M. Jor-
dan. Learning the kernel matrix with semidefinite programming.
Journal of Machine Learning Research, 5:27–72, 2004.

[10] D. J. C. MacKay. Introduction to Gaussian processes. InC. M.
Bishop, editor,Neural Networks and Machine Learning, NATO
ASI Series, pages 133–166. Kluwer, 1998.

[11] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. InNIPS, pages 849–856, 2001.

[12] R. T. Rockafellar.Convex analysis. Princeton University Press,
Princeton, NJ, 1970.

[13] M. Szummer and T. Jaakkola. Partially labeled classification with
Markov random walks. InNIPS 2001, 2002.

[14] G. Wahba. Spline Models for Observational Data. CBMS-
NSF Regional Conference series in applied mathematics. SIAM,
Philadelphia, PA, 1990.

[15] T. Zhang. Leave-one-out bounds for kernel methods.Neural
Computation, 15:1397–1437, 2003.

[16] T. Zhang. Learning bounds for kernel regression using effective
data dimensionality.Neural Computation, 17:2077–2098, 2005.

[17] D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf.
Learning with local and global consistency. InNIPS 2003, pages
321–328, 2004.

[18] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning
using Gaussian fields and harmonic functions. InICML 2003,
2003.

[19] X. Zhu, J. Kandola, Z. Ghahramani, and J. Lafferty. Nonpara-
metric transforms of graph kernels for sem-supervised learning.
In NIPS’04, 2004.

[20] X. Zhu, J. Lafferty, and Z. Ghahramani. Semi-supervised
learning: From Gaussian fields to Gaussian processes. Technical
Report CMU-CS-03-175, CMU, 2003.

18


