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omAbstra
tThis paper des
ribes our experimentsin the TREC 2005 Genomi
s Tra
k.For the ad-ho
 retrieval task, westudy synonym-based query expan-sion, as well as the e�e
tiveness of anew pseudo-relevan
e feedba
k methodwhi
h is derived from our re
ent workon semi-supervised learning. For the
ategorization task, we study vari-ous methods for estimating 
onditional
lass probability and determining theoptimal threshold parameter | essen-tial for obtaining high performan
e re-sults for this task.1 Introdu
tionThis paper reports on our parti
ipation in theTREC 2005 Genomi
s Tra
k. The submissionswere on two tasks: ad-ho
 retrieval and 
at-egorization. The goal of the ad-ho
 retrievaltask was to sear
h a Medline 
orpus 
onsist-ing of biomedi
al paper abstra
ts. We ex-perimented with a new pseudo-relevan
e feed-ba
k method derived from a re
ently proposedsemi-supervised learning method, as well as do-main database synonym lookup for query ex-pansion. The goal of the 
ategorization taskwas to sele
t journal arti
les to be 
ataloged inthe Mouse Genome Informati
s database (MGI).On this task, we used a regularized linear 
lassi-�er and experimented with supervised and semi-supervised learning approa
hes, with emphasis�This work was done when the se
ond author was asummer visitor at IBM T.J. Watson Resear
h Center.yThis work was done when the third author was atIBM T.J. Watson Resear
h Center.

on 
lass probability estimation-based thresholddetermination methods.Our systems are 
ompetitive on both tasks.On the ad-ho
 retrieval task, our two oÆ
ialruns produ
ed the se
ond and third best mapresults among all the 45 automati
 runs, withsmall di�eren
es from the top automati
 run.On the 
ategorization task, our oÆ
ial runa
hieved the best utility on one of four sub-tasks.The paper is organized as follows. We presentour ad-ho
 retrieval system in Se
tions 2.1{2.4.The results on the 2004 and 2005 topi
 sets arereported in Se
tion 2.5. The 
ategorization sys-tems and the performan
e results are presentedin Se
tion 3.2 Ad-ho
 retrievalIt appears from the literature that su

essfulsystems in the 2004 Genomi
s Tra
k are typi-
ally equipped with some form of pseudo rele-van
e feedba
k and query expansion using do-main databases. We adopt this framework andfo
us on:� Developing a new automated feedba
kmethod, whi
h we will refer to as stru
turalfeedba
k .� The use of domain databases for obtainingsynonyms, and their use for query expan-sion.The high-level data 
ow is shown in Figure 1.We �rst index do
uments in the 
orpus, whi
hwe view as the generation of do
ument ve
tors.For a given sear
h topi
, our system generates aquery ve
tor in
orporating synonyms for queryterms using domain database lookup. For thegeneration of both query and do
ument ve
tors,we use term weighting similar to the popular
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 retrieval data 
ow (high-level).BM25 (Robertson et al., 1994). A sear
h ofthe index given the query ve
tor is performedby taking the inner produ
t of the query ve
torand ea
h do
ument ve
tor. From the query ve
-tor and do
ument ve
tors thus retrieved, stru
-tural feedba
k generates a new enhan
ed queryve
tor. The �nal sear
h results are obtained bytaking inner produ
ts of this new query ve
torand do
ument ve
tors.We �rst present the stru
tural feedba
kmethod (Se
tion 2.1), and then des
ribe the useof domain knowledge for enhan
ing queries inSe
tion 2.2. The 2005 topi
 set di�ers from the2004 topi
 set in its introdu
tion of �ve topi
templates. We dis
uss the impli
ations of tem-plates in Se
tion 2.3. After des
ribing the im-plementation details su
h as term weighting inSe
tion 2.4, we report performan
e results onthe 2004 and 2005 topi
 sets (Se
tion 2.5).2.1 Using unlabeled data throughstru
tural feedba
kThis se
tion des
ribes our new automati
 feed-ba
k algorithm. The idea is to learn a relevantstru
ture shared by multiple variations of theoriginal query, and then use this shared stru
-ture to improve IR performan
e. The devel-opment of our new automati
 feedba
k methodstems from the Alternating Stru
ture Optimiza-tion (ASO) algorithm re
ently proposed forsemi-supervised learning.

2.1.1 ASO and its appli
ation tosemi-supervised learningASO is a ma
hine learning algorithm designedto improve predi
tion performan
e (e.g. 
lassi�-
ation performan
e) by simultaneously learningmultiple predi
tion problems that are related toea
h other (Ando and Zhang, 2005a; Ando andZhang, 2005b). The shared stru
ture is learnedby joint empiri
al risk minimization over thesemultiple related tasks. The learned stru
ture isthen transferred to the target predi
tion prob-lem of interest.The intuition is that by observing many re-lated problems, one 
an learn useful informa-tion (predi
tive stru
ture) shared by these prob-lems and then use it for improving overall per-forman
e. In parti
ular, the appli
ation of ASOin the semi-supervised setting exploits unlabeleddata by 
reating multiple predi
tion problemsand their labeled examples automati
ally fromunlabeled data. If these 
reated predi
tion prob-lems (
alled auxiliary problems) are related tothe target predi
tion problem of interest, thenthe shared predi
tive stru
ture learned by ASOwill be useful for the target problem.We do not in
lude the algorithmi
 details ofASO in this paper; instead, we refer the readerto (Ando and Zhang, 2005a; Ando and Zhang,2005b). Here we simply state that ASO pro-du
es a stru
ture matrix �, whi
h 
aptures in-formation learned from unlabeled data via auxil-iary problems. The rows of � are essentially themost signi�
ant left singular ve
tors of a matrixof feature-weight ve
tors learned on auxiliaryproblems. (An alternating optimization pro
e-dure 
an be used to improve the learned stru
-ture �, whi
h gives the name of the method).From � and a feature ve
tor x, we obtain a newfeature ve
tor representation:x̂ = � x�x � : (1)The �nal step of ASO is to perform training forthe target problem using the new feature ve
torrepresentation in (1) and the labeled data. Ithas been shown that the in
lusion of unlabeleddata in this way (i.e., via � in (1)) improves pre-di
tion performan
e on a number of tasks su
h



as text 
ategorization, named entity and synta
-ti
 phrase re
ognition.2.1.2 Stru
tural feedba
k overviewSuppose that ve
tor representations (or a fea-ture mapping) of a query and a 
olle
tion ofdo
uments are given as input. Essentially, ourstru
tural feedba
k algorithm employs a stru
-tural learning idea similar to that of ASO.Spe
i�
ally, we 
onsider sear
h as a problem ofpredi
ting a do
ument's relevan
y/irrelevan
yto the topi
 (represented by the query), usinga linear predi
tion model. We further 
onsiderthe given query ve
tor as the only positive (`rel-evant') example available for training on thistask, while regarding all the do
uments (thatare to be retrieved) as unlabeled data.From this viewpoint, negative (`irrelevant')examples are not expli
itly given. Therefore in-stead of using a dis
riminative learning methodthat tries to separate positive data from negativedata, it is more appropriate to 
onsider gener-ative learning methods where a model for ea
h
lass 
an be 
onstru
ted from positive data only.Su
h generative models in
lude Naive Bayes andCentroid methods (whi
h uses the mean of thepositive data points as the weight ve
tor). Be-
ause a weighting s
heme similar to BM25 hasbeen applied priori, we shall simply adopt the
entroid method in our approa
h. With only thequery as positive data, the weight ve
tor aftertraining (using a 
entroid method) trivially re-sults in the query ve
tor itself. Sin
e we assumea linear model, the predi
tion or output value(relevan
y s
ore) is given by the inner produ
tof the weight ve
tor (query ve
tor) and a fea-ture ve
tor (do
ument ve
tor). This is 
onsis-tent with traditional IR methods.We know from the ma
hine learning literaturethat one 
an improve predi
tion performan
eby using unlabeled examples in addition to la-beled examples { this is essentially the semi-supervised learning problem. A natural questionto ask is whether related ideas 
an be applied toinformation retrieval, when posed as a learningproblem su
h as outlined above. In this 
ase, un-labeled examples are simply do
uments to be re-trieved sin
e their labels (relevan
y/irrelevan
y

to the sear
h topi
) are not given.Re
all that the essen
e of ASO is to learn auseful predi
tive stru
ture from multiple relatedproblems. To apply this idea to the task ofrelevan
y predi
tion in IR, we 
reate auxiliaryproblems by generating a number of variants ofthe given query. More pre
isely, we 
onsider thedo
uments `highly ranked' by these query vari-ants as the positive examples of the auxiliarypredi
tion problems, and apply stru
tural learn-ing to these auxiliary problems. Our methodthen generates the stru
ture matrix �, whi
h
aptures predi
tive stru
ture shared by the aux-iliary problems. If we apply the original ASOformulation, new feature ve
tors (a new queryve
tor and new do
ument ve
tors) would be gen-erated as in (1). However, for eÆ
ien
y, we keepdo
ument ve
tors as they are and only 
hangethe query ve
tor by:q̂ = q +�T�q : (2)It is easy to verify that doing so is equivalentto (1) for our purpose. Thus, we obtain a newenhan
ed query ve
tor q̂.Input: initial query ve
tor qParameters: m, hOutput: new query ve
tor q̂Generate query variants q1; q2; � � � ; qp from q.S := f m do
uments highly ranked by query q gfor i = 1 to pSi := S \ f do
uments highly ranked by qi gwi :=Pd2Si d=jjPd2Si djj2End forLet W be a matrix whose i-th 
olumn is wi.Set the rows of � to be W 's h most signi�
antleft singular ve
tors.q̂ := q +�T�qFigure 2: Overview of the stru
tural feedba
kmethod2.1.3 Stru
tural feedba
kimplementation detailsAlthough there are several ways to generateuseful query variants, our implementation gen-erates variants by removing up to k tokens (fork = 0; 1; 2) from the input query. For instan
e,if the given query 
onsists of f ferroportin, 1,



iron, human g, we will have eleven query vari-ants: four three-token variants (f ferroportin, 1,iron g, f ferroportin, 1, human g, f ferroportin,iron, human g, f 1, iron, human g ); six two-token variants (f ferroportin, 1 g, f ferroportin,iron g, � � � ); and the original query.To retrieve do
uments by these query vari-ants, it is too expensive to sear
h the entire 
or-pus. Instead, we �rst retrieve m do
uments bythe given query, and from thesem do
uments we
hoose the ones highly ranked by the query vari-ants. This requires the use of a 
ut-o� 
riterionfor 
hoosing highly-ranked do
uments. Considera pseudo do
ument in whi
h every token in thequery variant qi o

urs only on
e, and let ~di bethe do
ument ve
tor (generated as in Se
tion2.4.2) for this pseudo do
ument. We say thatdo
ument (ve
tor) d is highly ranked by qi if andonly if qTi d � qTi ~di.In the original ASO algorithm, empiri
al riskminimization is used for training dis
riminative
lassi�ers on the auxiliary problems. As men-tioned earlier, due to the absen
e of negative ex-amples, we employ a generative learning modelin this work. Spe
i�
ally we adopt the (normal-ized) 
entroid method where the feature-weightve
tor wi is given by the length-normalized av-erage of the positive examples (highly rankeddo
ument ve
tors that are sele
ted). Then, asin ASO, we 
onstru
t a matrix W so that itsi-th 
olumn is the weight ve
tor wi and 
om-puteW 's h most signi�
ant left singular ve
tors,whi
h give the rows of the stru
ture matrix �.In our experiments we set the dimension param-eter h = 1.Our implementation of the stru
tural feed-ba
k method has two additional parameters.One is m, the number of do
uments retrievedby the initial query. In our oÆ
ial runs, we setm = 30. The performan
e is relatively insensi-tive to m as long as m is not too small. The se
-ond parameter is the number of terms we keepin the new query ve
tor q̂. Although it mightbe ideal, using q̂ as is 
onsiderably in
reases thesear
h runtime. We zero out all but the k largestentries of q̂. The performan
e seems to be rela-tively insensitive to k in the range of k � 50. Inour oÆ
ial runs, we set k = 100.

Figure 2 summarizes the stru
tural feedba
kmethod.2.1.4 Dis
ussionApart from the theoreti
al justi�
ation givenin the original ASO work (Ando and Zhang,2005a), the intuitive meaning of stru
tural feed-ba
k be
omes 
learer when we set h = 1. Thestru
ture matrix � for h = 1 has only one row,for whi
h we write �1 so that �1 = �T . By 
on-stru
tion, �1 is the most signi�
ant left singu-lar ve
tor of the auxiliary feature-weight matrix.Therefore, for p query variants, we have:�1 = argmaxj�j=1 pXi=1(�Twi)2 ; (3)q̂ = q + (�T1 q)�1 : (4)That is, the new query ve
tor q̂ is a weightedsum of the original query q and an additionalquery ve
tor �1. In the additional query ve
-tor �1, query terms are automati
ally weightedbased on how representative they are in the do
-uments highly ranked by query variants, as seenfrom (3). The 
oeÆ
ient �T1 q serves as a globalweight of the additional query �1. This globalweight be
omes relatively large, if the originalquery terms are relatively representative in thedo
uments retrieved by many of the query vari-ants. As su
h, �T1 q serves as an automati
 weightthat re
e
ts 
on�den
e in the usefulness of theadditional query �1. That is, if queries slightlydi�erent from one another retrieve essentiallysimilar do
uments in whi
h the original queryterms relatively dominate, one 
ould more 
on-�dently say that the terms from those retrieveddo
uments should be useful as query terms.2.2 Using domain knowledge2.2.1 Database lookup for synonymsIt is well known that the key 
on
epts in thisdomain (su
h as genes and proteins) have manyaliases. We use the following databases to lookfor synonyms:� Lo
usLink1� Gene Ontology (GO)21http://www.indiana.edu/~ra
/
lsd/lo
uslink.html2http://www.geneontology.org



� Mesh3� Swiss-Prot4We sear
h the databases for longest mat
hwith the given topi
 text and add the synonymslisted in the mat
hed database entries to thequery.In addition, we use an abbreviation lexi
on tomap abbreviations to their full forms (e.g., map-ping \TGFB" to \Transforming Growth Fa
torBeta"). We automati
ally generated this lexi
onfrom the Medline 
orpus by a method essentiallysimilar to (S
hwartz and Hearst, 2003). To im-prove the mapping pre
ision we remove entriesthat o

urred less than �ve times and sele
t themost frequent full form if multiple forms exist.Given the initial query ve
tor q, our newquery ve
tor qs enhan
ed by the databaselookup is: qs = q + 0:1s, where s is the queryve
tor generated (as in Se
tion 2.4.2) from theadditional tokens from the synonyms and thefull forms of abbreviations.To apply stru
tural feedba
k to the query en-han
ed with synonyms, we use qs to initially re-trieve the m do
uments, but we use the originalquery q to generate query variants. The �nalquery is then generated by qs + (�T1 qs)�1.2.2.2 Bi-gramsBio
hemi
al entity names often 
ontain bothalphabeti
al 
hara
ters and digits and have no-tational variations (e.g., \ABC1" vs. \ABC-1"). To 
ountera
t this, we add sele
ted to-ken bi-grams to the index and queries. Morespe
i�
ally, we generate token bi-grams (e.g.,\ABC 1" where \ " indi
ates the token bound-ary) whenever we see an alphabeti
 
hunk fol-lowed by a digit 
hunk with/without a whitespa
e or a hyphen between them (e.g., \ABC1",\ABC 1", \ABC-1"). Similarly, we generate to-ken bi-grams (e.g., \1 ABC") for digit 
hunksfollowed by alphabeti
 
hunks (e.g., \1ABC", \1ABC", \1-ABC"). This is done both in index-ing and in query generation. The token bi-gramsadded to the queries and do
uments are treated3http://www.nlm.nih.gov/mesh/meshhome.html4http://www.ebi.a
.uk/swissprot/

in the same way as the other tokens in the gen-eration of query/do
ument ve
tors.2.3 Topi
 templatesSin
e the Genomi
s Tra
k is relatively new, theonly available topi
 set with relevan
e judg-ments useful for the development of our methodsis the one from 2004. Although the 2004 topi
sare in the usual TREC format, the 2005 topi
sare expressed in �ve topi
 templates. Most ofthese templates have two slots su
h as \roles ofgene X in disease Y". The impli
ation is that the2005 topi
s look for more spe
i�
 informationthan the 2004 topi
s (e.g., \information on geneX"); 
onsequently, the 2005 topi
s are appar-ently more diÆ
ult than the 2004 topi
s. (Whenusing two-slot topi
 templates, �nding X only isnot enough. Relevant do
uments are requiredto 
ontain both an X and a Y that are relatedto ea
h other in the designated way.) In addi-tion, the 2005 topi
s are substantially less ver-bose than the 2004 topi
s, whi
h have the titleand need se
tions. Su
h terse topi
s (
onveyingless information) pose a 
hallenge.If a suÆ
ient amount of development datawere provided, we 
ould have worked on devel-oping methods that address su
h issues. How-ever, only two sample topi
s per template weremade available, and their relevan
e judgmentswere indi
ated as in
omplete/unreliable. Giventhe absen
e of appropriate development data,we de
ided not to do anything spe
ial with thenewly introdu
ed topi
 format.2.4 Implementation details2.4.1 IndexingWe tokenize the text at white spa
es afterrepla
ing all the non-alphabeti
 and non-digit
hara
ters with white spa
es. The Porter stem-mer is used for stemming, and stopwords (fun
-tion words) are removed. In this manner, weobtain tokens (or terms) from the TI (title), AB(abstra
t), and RN se
tions of the Medline ar-ti
les, and index do
uments with these terms.Our experiments use an in-house sear
h enginebased on the 
onventional inverted �le me
ha-nism.



des
riptions mapbaseline (simple queries) 37.95 {bi-gram 39.56 (+1.61)synonyms 39.98 (+2.03)(2004 best (Fujita, 2004)) 40.75 (+2.80)bi-gram + synonyms 41.45 (+3.50)stru
tural feedba
k 44.20 (+6.25)stru
tural feedba
k + bi-grams 45.19 (+7.24)stru
tural feedba
k + bi-grams + synonyms 45.52 (+7.57)Figure 3: Mean average pre
ision results (%) on 2004 topi
s. The numbers in parentheses are thegains 
ompared to our baseline performan
e.2.4.2 Query and do
ument ve
torrepresentationsA query is generated from the narrative-format topi
 text, removing stopwords and thetemplate words (e.g., \role"). We generate aquery ve
tor q and do
ument ve
tor d by set-ting the j-th entries (
orresponding to the j-thterm) q[j℄ and d[j℄ to:q[j℄ = pidfj � fj � (k3 + 1)fj + k3 ;d[j℄ = pidfj � f 0j � k1f 0j + k1 �(1� b) + b � l=�l� ;idfj = log� n+ 1dfj + 0:5� ;where fj and f 0j are the frequen
ies of the j-thterm in the topi
 and do
ument, respe
tively,l is the length of do
ument, �l is the averagelength of the do
uments, dfj is the do
umentfrequen
y of the j-th term, and n is the num-ber of do
uments. The above feature weight-ing is essentially the same as BM25 (Robert-son et al., 1994). Although IR term weight-ing might be typi
ally des
ribed as a produ
tof q[j℄ and d[j℄, we instead 
onsider a query ve
-tor and a do
ument ve
tor separately as featureve
tors. Throughout the experiments, we setk1 = 1:2; k3 = 7; b = 0:75, adopted from theLemur5 default setting.5http://www.lemurproje
t.org

2.5 Ad-ho
 retrieval results2.5.1 Results on the 2004 topi
sFigure 3 shows the mean average pre
ision(map) results on the 2004 topi
s. Our baselineuses queries generated without stru
tural feed-ba
k or synonyms/bi-grams. The TITLE andNEED se
tions were used to generate the initialquery ve
tors.Most notably, stru
tural feedba
k greatly im-proves performan
e over the baseline, produ
-ing 44.20% map. Combining stru
tural feed-ba
k with bi-grams and synonyms, the map is45.52%, whi
h is 7.57% higher than our base-line and 4.77% higher than the 2004 top system(Fujita, 2004).Bi-grams and synonyms are both e�e
tive onthe 2004 topi
s. However, upon the inspe
-tion of the performan
e on individual topi
s, wefound that bi-gram queries are somewhat un-stable { i.e., bi-grams greatly improve perfor-man
e on some topi
s but signi�
antly degradeperforman
e on other topi
s. Therefore, we de-
ided to submit one run with \stru
tural feed-ba
k+synonyms" and the other run with \stru
-tural feedba
k+bi-grams+synonyms".2.5.2 Results on the 2005 topi
sFigure 4 shows the mean average pre
ision re-sults on the 2005 topi
s. Overall, the perfor-man
e is lower than on the 2004 topi
s. Thisis not surprising. As mentioned in Se
tion 2.3,the 2005 topi
s are apparently more 
hallenging,presumably as a result of introdu
ing templates.It turned out that unlike the 2004 topi
s, syn-



run names des
riptions map{ synonyms 25.89 (�0.21){ baseline 26.10 {{ bi-grams 26.54 (+0.44)ibmadz05bs stru
tural feedba
k +synonyms+bi-grams 28.59 (+2.49)ibmadz05us stru
tural feedba
k +synonyms 28.83 (+2.73)(york05gm1) (best automati
 run) 28.88 {{ stru
tural feedba
k +bi-grams 29.04 (+2.94){ stru
tural feedba
k 29.74 (+3.64){ stru
tural feedba
k w/ m=20 30.10 (+4.00){ stru
tural feedba
k w/ m=10 30.16 (+4.06)(york05ga1) (best manual run) 30.20 {Figure 4: Mean average pre
ision results on 2005 topi
s. The parameter m for stru
tural feedba
kwas set to 30 unless spe
i�ed otherwise. The numbers in parentheses are the gains 
ompared toour baseline performan
e.onyms whi
h we obtained from several domainspe
i�
 databases slightly degraded performan
eon the 2005 topi
s. Bi-grams improve perfor-man
e by 0.44% when we do not use the stru
-tural feedba
k method. However, our �ndingis that, in fa
t, the stru
tural feedba
k methodalone a
hieves higher performan
e than 
ombi-nations of stru
tural feedba
k with synonymsand/or bi-grams (whi
h are our oÆ
ial runs).The map result of our best oÆ
ial run (ib-madz05us) is the se
ond best among all the au-tomati
 runs, with a small di�eren
e (0.05%)from the best run. Using stru
tural feedba
kalone, we are able to produ
e a map 30.16%,whi
h is higher than the best automati
 run andvery 
lose to the best manual run.It is en
ouraging to 
on�rm that the newstru
tural feedba
k method 
onsistently per-forms well. Moreover, in our private experi-ments not in
luded in this report, we observedthat this new idea outperformed some 
onven-tional pseudo-relevan
e feedba
k methods whi
hwe also implemented. We believe that this newapproa
h warrants further investigation.2.5.3 Dis
ussionOn the ad-ho
 retrieval task, we experimentedwith a new automati
 feedba
k method whi
hwe 
all stru
tural feedba
k, as well as query ex-pansion using synonyms found in domain spe-


i�
 databases. The former turned out to be
onsistently useful, while the usefulness of thelatter is in
on
lusive.The potential danger in adding synonymsfrom databases appears to be at least two-fold.First, we may introdu
e irrelevant query termsbe
ause of `noisy' database entries or the inher-ent ambiguity of the mat
hed entries. Se
ondly,and more importantly, even if we 
an 
orre
tlyobtain synonyms, it is not 
lear, at least to us,what term weights should be assigned to the to-kens resulting from those synonyms (whi
h areoften multi-word expressions). If the weights as-signed to synonym tokens are too large, theymay, in e�e
t, `dominate' other terms that hap-pen to have no synonyms. Su
h imbalan
e ofterm weights is a 
riti
al issue, espe
ially whenrelevant do
uments must 
ontain two 
on
eptswith a spe
i�
 relationship.On the other hand, stru
tural feedba
k, in ef-fe
t, automati
ally adjusts for ea
h topi
, theweight of the additional query ve
tor �1, basedon an impli
itly estimated `
on�den
e'. Our ex-perien
e indi
ates that the resulting method isquite e�e
tive. It might be useful to investi-gate a similar `fail-safe me
hanism' for synonymsfrom external resour
es.Our submission system is purely based on gen-eral purpose sear
h te
hnology, without any spe-
i�
 
omponents for topi
 templates and the se-



manti
al meanings they imply. Although webelieve a more dedi
ated retrieval system spe-
ialized to su
h appli
ations 
ould yield betterperforman
e on this parti
ular TREC task, itis en
ouraging to see that our system, whi
h isnot designed spe
i�
ally for this tra
k, produ
esgood results with the help of our new stru
turalfeedba
k method.3 CategorizationThe purpose of the Genomi
s Tra
k 
ategoriza-tion task is to triage MGI journal arti
les a
-
ording to one of four information needs. Thereare four sub-tasks 
orresponding to the informa-tion sought: A (Alleles of mutant phenotypes),G (Gene Ontology annotation), T (Tumor biol-ogy), and E (Embryologi
 gene expression). Wesubmitted three runs for ea
h.3.1 MeasurementThe task setting di�ers from typi
al text 
ate-gorization tasks in that the evaluation metri
,so-
alled utility, is spe
i�
ally designed for thistra
k, whi
h penalizes false negatives far moreseverely than false positives.The version used in the evaluation is a nor-malized utility de�ned as Unorm = Uraw=Umax.For a test 
olle
tion of do
uments to 
atego-rize, Uraw is 
al
ulated as follows: Uraw =(ur � TP ) + (unr � FP ), where ur is the rela-tive utility of relevant do
uments, and unr is therelative utility of non-relevant do
uments. TPis the true positive and FP is the false positive.Umax is the maximum possible utility under per-fe
t 
lassi�
ation. With unr = �1, the values ofur used in the evaluation are 17 for A, 64 for E,11 for G, and 231 for T.To maximize utility, spe
ial attention isneeded to determine the 
ut-o� threshold. Sup-pose that the 
lassi�
ation method 
an esti-mate the 
onditional in-
lass probability P (Y =1jX), and that we retrieve all do
uments Xwith P (Y = 1jX) � � for some 
uto� thresh-old �. Sin
e the probability of X being TP isP (Y = 1jX), and being FP is 1� P (Y = 1jX),any do
ument above the optimal threshold �should 
ontribute to Uraw positively on average.

This implies that we should 
hoose the thresh-old su
h that ur� + unr(1� �) = 0. That is, weshould retrieve every do
ument X su
h thatP (Y = 1jX) � � = �unr=(ur � unr): (5)This method of threshold sele
tion is also usedin (Dayanik et al., 2004).3.2 Learning methodsWe employ regularized linear 
lassi�
ation withmodi�ed Huber loss and square (and optionally1-norm) regularization, separately for ea
h task.Let the training data be (Xi; Yi) (i = 1; : : : ; n),where Xi is the ve
tor representation of a do
-ument, and Yi 2 f�1g be the 
orresponding la-bel. We seek a linear weight ve
tor ŵ whi
hminimizes the following obje
tive fun
tion:ŵ = argminw " 1n nXi=1 L(wTXi; Yi) + �wTw;#where � � 0 is an appropriately 
hosen regular-ization parameter, whi
h is used to stabilize thesolution, andL(p; y) = � max(0; 1 � py)2 if py � �1�4py otherwise :It 
an be shown (Zhang, 2004) that by using thismethod, we have a probability modelP (Y = 1jX) = max(0;min(1; (1 + ŵTX)=2)):(6)This probability estimate 
an then be 
ombinedwith (5) to obtain a retrieval strategy, in whi
hwe retrieve every do
ument X su
h that ŵTX ��2unr=(ur � unr)� 1.Another more 
lassi
al linear model for prob-ability estimation is logisti
 regression. Sin
ethreshold determination is parti
ularly impor-tant to the 
ategorization task (the performan
eis very sensitive to slight mistakes in the thresh-old value), we experimented with a few methodsfor threshold determination, in
luding probabil-ity estimation and dire
t 
ross-validation. In ad-dition, we experimented with feature weightings
hemes su
h as binary versus TFIDF, as wellas the ASO semi-supervised learning method



aibmadz05s ASO w/ partially-supervised auxiliary problems; 
ross-validation threshold.aibmadz05m1,2 aibmadz05s + supervised w/ binary features.eibmadz05s supervised w/ binary features; probability threshold.eibmadz05m1,2 eibmadz05s + supervised w/o bi-gram features.gibmadz05s ASO w/ unsupervised auxiliary problems; probability threshold.gibmadz05m1,2 gibmadz05s + supervisedtibmadz05s ASO w/ partially-supervised auxiliary problems; probability threshold.tibmadz05m1,2 tibmadz05s + supervised 
on�guration w/ binary features.Figure 5: Des
riptions of 
ategorization runs. m1 and m2 determine thresholds by probability estimation and 
rossvalidation, respe
tively. Auxiliary problems for ASO are des
ribed in (Ando and Zhang, 2005a).brie
y des
ribed in Se
tion 2.1. In this study,we did not attempt to explore 
ompli
ated do
u-ment representation features, ex
ept for the useof Mesh. Our interests fo
us on the appli
a-tion of semi-supervised learning in this s
enario,as well as threshold determination. The fea-tures we used are: tokens extra
ted from thetitle, abstra
t, and body se
tions of the jour-nal arti
les; and the keywords from the Meshse
tions of the 
orresponding Medline entries.In addition, we use the bi-grams that 
ombineea
h of these tokens and the presen
e/absen
eof "Mouse" in the Mesh se
tions. No externalknowledge sour
e other than Medline is used.Although ASO has been shown to e�e
tivelyexploit unlabeled data on text 
ategorization,unfortunately, this parti
ular task is not idealfor experimenting with semi-supervised learn-ing. One issue we en
ountered here is the avail-ability of unlabeled data, whi
h should ideallybe taken from the same sour
e as the test data.However, the sour
es of test data are biomed-i
al journals, to whi
h we did not have a

essfor 
opyright reasons. As a substitute, we onlyused as unlabeled data a set of Medline abstra
ts(whi
h are substantially shorter than full jour-nal arti
les) that 
ontain \mouse", \mi
e", or\mus". Another issue is the absen
e of relevantfeatures. The supervised performan
e seems toindi
ate that our feature spa
e does not 
ontainstrongly dis
riminating features.6 In this situa-tion, the performan
e bottlene
k is the absen
eof relevant features from the designed featurespa
e rather than the pau
ity of labeled train-6As mentioned in the report on the 2004 parti
ipation(Dayanik et al., 2004), we 
onje
ture that there are somefa
tors other than the 
ontent of the arti
les that area�e
ting the label assignments.

ing examples, and therefore, it be
omes harderto bene�t from unlabeled data. The third is-sue is the pe
uliarities of the evaluation met-ri
 used in this task: the performan
e is domi-nated by the proper determination of thresholdvalues. In fa
t, even with the �rst two issuesmentioned above, ASO was able to produ
e ap-pre
iable improvements over the baseline withora
le thresholds that are optimally sele
ted onthe test data. However, the performan
e gainbe
omes insigni�
ant when thresholds are esti-mated on the training data, whi
h implies thata good threshold estimation method is the keyto the su

ess on this task.Due to the importan
e of threshold estima-tion, in addition to the simple method basedon (5) and (6), we also 
onsidered a few more
ompli
ated ideas that 
an potentially improvethe simple probability estimates. The three runssubmitted for ea
h sub-task were generated asfollows. We performed 
ross validation of var-ious 
on�gurations on the training data. Wesele
ted and 
ombined the two best-performing
on�gurations by �tting their outputs on theheld-out data (part of the training data) us-ing logisti
 regression. We applied two typesof threshold determination methods (des
ribedbelow) to the 
ombined 
lassi�er, whi
h madetwo runs. The third run simply used the best-performing 
on�guration.One threshold determination method em-ployed is 5-fold 
ross validation. The other isbased on probability estimation based on (6)for modi�ed Huber loss, and we use the stan-dard probability estimate 1=(1 + exp(�ŵTX))if ŵ is trained using logisti
 regression. Withunr = �1, we 
an then threshold the estimated



x=a x=e x=g x=txibmadz05m1 .8492 .8277 .4993 .8931xibmadz05m2 .8482 .8339 .5004 .8998xibmadz05s .8710 .8464 .4717 .8944median .7785 .6548 .4575 .7610best .8710 .8711 .5870 .9433Figure 6: Categorization utility results.probability a

ording to (5) at 1=(ur + 1).3.3 ResultsFigure 6 shows the utility results of our oÆ
ialruns (des
ribed in Figure 5) in 
omparison withthe best and median utility among all the par-ti
ipants. It shows that our submission systemsare 
ompetitive. All of our 12 oÆ
ial results arehigher than the median. In parti
ular, our aib-madz05s (ASO) a
hieved the best result amongall the parti
ipants on sub-task A.One issue with this task is that the results arequite sensitive to the threshold. Therefore wefo
used our e�orts on reliable estimation of op-timal thresholds. We did not spend mu
h timeon engineering features that explore domain spe-
i�
 knowledge, whi
h might also signi�
antlyimprove the overall system performan
e. Aswe mentioned earlier, semi-supervised learningis not ne
essarily suitable for this task, due tothe parti
ulars of the task setting.4 Con
lusionThough our parti
ipation was in the Genomi
sTra
k, we fo
used on generally appli
able ap-proa
hes. We 
onsidered the ad-ho
 retrievaltask from the viewpoint of ma
hine learning,and on the 
ategorization task, we experimentedwith a regularized linear 
lassi�er in supervisedand semi-supervised settings.A 
entral theme of our study is to explore theuse of unlabeled data, both in information re-trieval and in text 
ategorization. We showedthat the newly proposed stru
tural feedba
kmethod, based on ideas from semi-supervisedlearning, 
onsistently improves retrieval perfor-man
e.For the purpose of a
hieving good perfor-

man
e spe
i�
ally on the Genomi
s tra
k, aweakness of our approa
h is that we did notexplore domain knowledge e�e
tively. For thead-ho
 retrieval task, we did not in
lude anysystem 
omponents to handle topi
 templates,whi
h were designed for this year's Genomi
stra
k. In the 
ategorization task, no domainspe
i�
 information other than Medline Meshterms was used. Although adding some domainspe
i�
 
omponents may potentially lead to bet-ter results on the two tasks in this year's Ge-nomi
s tra
k, it is en
ouraging to see that goodperforman
e 
an already be obtained from thegeneral purpose te
hniques we investigated here.A
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