
TREC 2005 Genomis Trak Experiments at IBM WatsonRie Kubota AndoIBM Watson ResearhHawthorne, NY, USArie1�us.ibm.om Mark Dredze �University of PennsylvaniaPhiladelphia, PA, USAmdredze�seas.upenn.edu Tong Zhang yYahoo InNew York City, USAtzhang�yahoo-in.omAbstratThis paper desribes our experimentsin the TREC 2005 Genomis Trak.For the ad-ho retrieval task, westudy synonym-based query expan-sion, as well as the e�etiveness of anew pseudo-relevane feedbak methodwhih is derived from our reent workon semi-supervised learning. For theategorization task, we study vari-ous methods for estimating onditionallass probability and determining theoptimal threshold parameter | essen-tial for obtaining high performane re-sults for this task.1 IntrodutionThis paper reports on our partiipation in theTREC 2005 Genomis Trak. The submissionswere on two tasks: ad-ho retrieval and at-egorization. The goal of the ad-ho retrievaltask was to searh a Medline orpus onsist-ing of biomedial paper abstrats. We ex-perimented with a new pseudo-relevane feed-bak method derived from a reently proposedsemi-supervised learning method, as well as do-main database synonym lookup for query ex-pansion. The goal of the ategorization taskwas to selet journal artiles to be ataloged inthe Mouse Genome Informatis database (MGI).On this task, we used a regularized linear lassi-�er and experimented with supervised and semi-supervised learning approahes, with emphasis�This work was done when the seond author was asummer visitor at IBM T.J. Watson Researh Center.yThis work was done when the third author was atIBM T.J. Watson Researh Center.

on lass probability estimation-based thresholddetermination methods.Our systems are ompetitive on both tasks.On the ad-ho retrieval task, our two oÆialruns produed the seond and third best mapresults among all the 45 automati runs, withsmall di�erenes from the top automati run.On the ategorization task, our oÆial runahieved the best utility on one of four sub-tasks.The paper is organized as follows. We presentour ad-ho retrieval system in Setions 2.1{2.4.The results on the 2004 and 2005 topi sets arereported in Setion 2.5. The ategorization sys-tems and the performane results are presentedin Setion 3.2 Ad-ho retrievalIt appears from the literature that suessfulsystems in the 2004 Genomis Trak are typi-ally equipped with some form of pseudo rele-vane feedbak and query expansion using do-main databases. We adopt this framework andfous on:� Developing a new automated feedbakmethod, whih we will refer to as struturalfeedbak .� The use of domain databases for obtainingsynonyms, and their use for query expan-sion.The high-level data ow is shown in Figure 1.We �rst index douments in the orpus, whihwe view as the generation of doument vetors.For a given searh topi, our system generates aquery vetor inorporating synonyms for queryterms using domain database lookup. For thegeneration of both query and doument vetors,we use term weighting similar to the popular
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knowledgeFigure 1: Ad-ho retrieval data ow (high-level).BM25 (Robertson et al., 1994). A searh ofthe index given the query vetor is performedby taking the inner produt of the query vetorand eah doument vetor. From the query ve-tor and doument vetors thus retrieved, stru-tural feedbak generates a new enhaned queryvetor. The �nal searh results are obtained bytaking inner produts of this new query vetorand doument vetors.We �rst present the strutural feedbakmethod (Setion 2.1), and then desribe the useof domain knowledge for enhaning queries inSetion 2.2. The 2005 topi set di�ers from the2004 topi set in its introdution of �ve topitemplates. We disuss the impliations of tem-plates in Setion 2.3. After desribing the im-plementation details suh as term weighting inSetion 2.4, we report performane results onthe 2004 and 2005 topi sets (Setion 2.5).2.1 Using unlabeled data throughstrutural feedbakThis setion desribes our new automati feed-bak algorithm. The idea is to learn a relevantstruture shared by multiple variations of theoriginal query, and then use this shared stru-ture to improve IR performane. The devel-opment of our new automati feedbak methodstems from the Alternating Struture Optimiza-tion (ASO) algorithm reently proposed forsemi-supervised learning.

2.1.1 ASO and its appliation tosemi-supervised learningASO is a mahine learning algorithm designedto improve predition performane (e.g. lassi�-ation performane) by simultaneously learningmultiple predition problems that are related toeah other (Ando and Zhang, 2005a; Ando andZhang, 2005b). The shared struture is learnedby joint empirial risk minimization over thesemultiple related tasks. The learned struture isthen transferred to the target predition prob-lem of interest.The intuition is that by observing many re-lated problems, one an learn useful informa-tion (preditive struture) shared by these prob-lems and then use it for improving overall per-formane. In partiular, the appliation of ASOin the semi-supervised setting exploits unlabeleddata by reating multiple predition problemsand their labeled examples automatially fromunlabeled data. If these reated predition prob-lems (alled auxiliary problems) are related tothe target predition problem of interest, thenthe shared preditive struture learned by ASOwill be useful for the target problem.We do not inlude the algorithmi details ofASO in this paper; instead, we refer the readerto (Ando and Zhang, 2005a; Ando and Zhang,2005b). Here we simply state that ASO pro-dues a struture matrix �, whih aptures in-formation learned from unlabeled data via auxil-iary problems. The rows of � are essentially themost signi�ant left singular vetors of a matrixof feature-weight vetors learned on auxiliaryproblems. (An alternating optimization proe-dure an be used to improve the learned stru-ture �, whih gives the name of the method).From � and a feature vetor x, we obtain a newfeature vetor representation:x̂ = � x�x � : (1)The �nal step of ASO is to perform training forthe target problem using the new feature vetorrepresentation in (1) and the labeled data. Ithas been shown that the inlusion of unlabeleddata in this way (i.e., via � in (1)) improves pre-dition performane on a number of tasks suh



as text ategorization, named entity and synta-ti phrase reognition.2.1.2 Strutural feedbak overviewSuppose that vetor representations (or a fea-ture mapping) of a query and a olletion ofdouments are given as input. Essentially, ourstrutural feedbak algorithm employs a stru-tural learning idea similar to that of ASO.Spei�ally, we onsider searh as a problem ofprediting a doument's relevany/irrelevanyto the topi (represented by the query), usinga linear predition model. We further onsiderthe given query vetor as the only positive (`rel-evant') example available for training on thistask, while regarding all the douments (thatare to be retrieved) as unlabeled data.From this viewpoint, negative (`irrelevant')examples are not expliitly given. Therefore in-stead of using a disriminative learning methodthat tries to separate positive data from negativedata, it is more appropriate to onsider gener-ative learning methods where a model for eahlass an be onstruted from positive data only.Suh generative models inlude Naive Bayes andCentroid methods (whih uses the mean of thepositive data points as the weight vetor). Be-ause a weighting sheme similar to BM25 hasbeen applied priori, we shall simply adopt theentroid method in our approah. With only thequery as positive data, the weight vetor aftertraining (using a entroid method) trivially re-sults in the query vetor itself. Sine we assumea linear model, the predition or output value(relevany sore) is given by the inner produtof the weight vetor (query vetor) and a fea-ture vetor (doument vetor). This is onsis-tent with traditional IR methods.We know from the mahine learning literaturethat one an improve predition performaneby using unlabeled examples in addition to la-beled examples { this is essentially the semi-supervised learning problem. A natural questionto ask is whether related ideas an be applied toinformation retrieval, when posed as a learningproblem suh as outlined above. In this ase, un-labeled examples are simply douments to be re-trieved sine their labels (relevany/irrelevany

to the searh topi) are not given.Reall that the essene of ASO is to learn auseful preditive struture from multiple relatedproblems. To apply this idea to the task ofrelevany predition in IR, we reate auxiliaryproblems by generating a number of variants ofthe given query. More preisely, we onsider thedouments `highly ranked' by these query vari-ants as the positive examples of the auxiliarypredition problems, and apply strutural learn-ing to these auxiliary problems. Our methodthen generates the struture matrix �, whihaptures preditive struture shared by the aux-iliary problems. If we apply the original ASOformulation, new feature vetors (a new queryvetor and new doument vetors) would be gen-erated as in (1). However, for eÆieny, we keepdoument vetors as they are and only hangethe query vetor by:q̂ = q +�T�q : (2)It is easy to verify that doing so is equivalentto (1) for our purpose. Thus, we obtain a newenhaned query vetor q̂.Input: initial query vetor qParameters: m, hOutput: new query vetor q̂Generate query variants q1; q2; � � � ; qp from q.S := f m douments highly ranked by query q gfor i = 1 to pSi := S \ f douments highly ranked by qi gwi :=Pd2Si d=jjPd2Si djj2End forLet W be a matrix whose i-th olumn is wi.Set the rows of � to be W 's h most signi�antleft singular vetors.q̂ := q +�T�qFigure 2: Overview of the strutural feedbakmethod2.1.3 Strutural feedbakimplementation detailsAlthough there are several ways to generateuseful query variants, our implementation gen-erates variants by removing up to k tokens (fork = 0; 1; 2) from the input query. For instane,if the given query onsists of f ferroportin, 1,



iron, human g, we will have eleven query vari-ants: four three-token variants (f ferroportin, 1,iron g, f ferroportin, 1, human g, f ferroportin,iron, human g, f 1, iron, human g ); six two-token variants (f ferroportin, 1 g, f ferroportin,iron g, � � � ); and the original query.To retrieve douments by these query vari-ants, it is too expensive to searh the entire or-pus. Instead, we �rst retrieve m douments bythe given query, and from thesem douments wehoose the ones highly ranked by the query vari-ants. This requires the use of a ut-o� riterionfor hoosing highly-ranked douments. Considera pseudo doument in whih every token in thequery variant qi ours only one, and let ~di bethe doument vetor (generated as in Setion2.4.2) for this pseudo doument. We say thatdoument (vetor) d is highly ranked by qi if andonly if qTi d � qTi ~di.In the original ASO algorithm, empirial riskminimization is used for training disriminativelassi�ers on the auxiliary problems. As men-tioned earlier, due to the absene of negative ex-amples, we employ a generative learning modelin this work. Spei�ally we adopt the (normal-ized) entroid method where the feature-weightvetor wi is given by the length-normalized av-erage of the positive examples (highly rankeddoument vetors that are seleted). Then, asin ASO, we onstrut a matrix W so that itsi-th olumn is the weight vetor wi and om-puteW 's h most signi�ant left singular vetors,whih give the rows of the struture matrix �.In our experiments we set the dimension param-eter h = 1.Our implementation of the strutural feed-bak method has two additional parameters.One is m, the number of douments retrievedby the initial query. In our oÆial runs, we setm = 30. The performane is relatively insensi-tive to m as long as m is not too small. The se-ond parameter is the number of terms we keepin the new query vetor q̂. Although it mightbe ideal, using q̂ as is onsiderably inreases thesearh runtime. We zero out all but the k largestentries of q̂. The performane seems to be rela-tively insensitive to k in the range of k � 50. Inour oÆial runs, we set k = 100.

Figure 2 summarizes the strutural feedbakmethod.2.1.4 DisussionApart from the theoretial justi�ation givenin the original ASO work (Ando and Zhang,2005a), the intuitive meaning of strutural feed-bak beomes learer when we set h = 1. Thestruture matrix � for h = 1 has only one row,for whih we write �1 so that �1 = �T . By on-strution, �1 is the most signi�ant left singu-lar vetor of the auxiliary feature-weight matrix.Therefore, for p query variants, we have:�1 = argmaxj�j=1 pXi=1(�Twi)2 ; (3)q̂ = q + (�T1 q)�1 : (4)That is, the new query vetor q̂ is a weightedsum of the original query q and an additionalquery vetor �1. In the additional query ve-tor �1, query terms are automatially weightedbased on how representative they are in the do-uments highly ranked by query variants, as seenfrom (3). The oeÆient �T1 q serves as a globalweight of the additional query �1. This globalweight beomes relatively large, if the originalquery terms are relatively representative in thedouments retrieved by many of the query vari-ants. As suh, �T1 q serves as an automati weightthat reets on�dene in the usefulness of theadditional query �1. That is, if queries slightlydi�erent from one another retrieve essentiallysimilar douments in whih the original queryterms relatively dominate, one ould more on-�dently say that the terms from those retrieveddouments should be useful as query terms.2.2 Using domain knowledge2.2.1 Database lookup for synonymsIt is well known that the key onepts in thisdomain (suh as genes and proteins) have manyaliases. We use the following databases to lookfor synonyms:� LousLink1� Gene Ontology (GO)21http://www.indiana.edu/~ra/lsd/louslink.html2http://www.geneontology.org



� Mesh3� Swiss-Prot4We searh the databases for longest mathwith the given topi text and add the synonymslisted in the mathed database entries to thequery.In addition, we use an abbreviation lexion tomap abbreviations to their full forms (e.g., map-ping \TGFB" to \Transforming Growth FatorBeta"). We automatially generated this lexionfrom the Medline orpus by a method essentiallysimilar to (Shwartz and Hearst, 2003). To im-prove the mapping preision we remove entriesthat ourred less than �ve times and selet themost frequent full form if multiple forms exist.Given the initial query vetor q, our newquery vetor qs enhaned by the databaselookup is: qs = q + 0:1s, where s is the queryvetor generated (as in Setion 2.4.2) from theadditional tokens from the synonyms and thefull forms of abbreviations.To apply strutural feedbak to the query en-haned with synonyms, we use qs to initially re-trieve the m douments, but we use the originalquery q to generate query variants. The �nalquery is then generated by qs + (�T1 qs)�1.2.2.2 Bi-gramsBiohemial entity names often ontain bothalphabetial haraters and digits and have no-tational variations (e.g., \ABC1" vs. \ABC-1"). To ounterat this, we add seleted to-ken bi-grams to the index and queries. Morespei�ally, we generate token bi-grams (e.g.,\ABC 1" where \ " indiates the token bound-ary) whenever we see an alphabeti hunk fol-lowed by a digit hunk with/without a whitespae or a hyphen between them (e.g., \ABC1",\ABC 1", \ABC-1"). Similarly, we generate to-ken bi-grams (e.g., \1 ABC") for digit hunksfollowed by alphabeti hunks (e.g., \1ABC", \1ABC", \1-ABC"). This is done both in index-ing and in query generation. The token bi-gramsadded to the queries and douments are treated3http://www.nlm.nih.gov/mesh/meshhome.html4http://www.ebi.a.uk/swissprot/

in the same way as the other tokens in the gen-eration of query/doument vetors.2.3 Topi templatesSine the Genomis Trak is relatively new, theonly available topi set with relevane judg-ments useful for the development of our methodsis the one from 2004. Although the 2004 topisare in the usual TREC format, the 2005 topisare expressed in �ve topi templates. Most ofthese templates have two slots suh as \roles ofgene X in disease Y". The impliation is that the2005 topis look for more spei� informationthan the 2004 topis (e.g., \information on geneX"); onsequently, the 2005 topis are appar-ently more diÆult than the 2004 topis. (Whenusing two-slot topi templates, �nding X only isnot enough. Relevant douments are requiredto ontain both an X and a Y that are relatedto eah other in the designated way.) In addi-tion, the 2005 topis are substantially less ver-bose than the 2004 topis, whih have the titleand need setions. Suh terse topis (onveyingless information) pose a hallenge.If a suÆient amount of development datawere provided, we ould have worked on devel-oping methods that address suh issues. How-ever, only two sample topis per template weremade available, and their relevane judgmentswere indiated as inomplete/unreliable. Giventhe absene of appropriate development data,we deided not to do anything speial with thenewly introdued topi format.2.4 Implementation details2.4.1 IndexingWe tokenize the text at white spaes afterreplaing all the non-alphabeti and non-digitharaters with white spaes. The Porter stem-mer is used for stemming, and stopwords (fun-tion words) are removed. In this manner, weobtain tokens (or terms) from the TI (title), AB(abstrat), and RN setions of the Medline ar-tiles, and index douments with these terms.Our experiments use an in-house searh enginebased on the onventional inverted �le meha-nism.



desriptions mapbaseline (simple queries) 37.95 {bi-gram 39.56 (+1.61)synonyms 39.98 (+2.03)(2004 best (Fujita, 2004)) 40.75 (+2.80)bi-gram + synonyms 41.45 (+3.50)strutural feedbak 44.20 (+6.25)strutural feedbak + bi-grams 45.19 (+7.24)strutural feedbak + bi-grams + synonyms 45.52 (+7.57)Figure 3: Mean average preision results (%) on 2004 topis. The numbers in parentheses are thegains ompared to our baseline performane.2.4.2 Query and doument vetorrepresentationsA query is generated from the narrative-format topi text, removing stopwords and thetemplate words (e.g., \role"). We generate aquery vetor q and doument vetor d by set-ting the j-th entries (orresponding to the j-thterm) q[j℄ and d[j℄ to:q[j℄ = pidfj � fj � (k3 + 1)fj + k3 ;d[j℄ = pidfj � f 0j � k1f 0j + k1 �(1� b) + b � l=�l� ;idfj = log� n+ 1dfj + 0:5� ;where fj and f 0j are the frequenies of the j-thterm in the topi and doument, respetively,l is the length of doument, �l is the averagelength of the douments, dfj is the doumentfrequeny of the j-th term, and n is the num-ber of douments. The above feature weight-ing is essentially the same as BM25 (Robert-son et al., 1994). Although IR term weight-ing might be typially desribed as a produtof q[j℄ and d[j℄, we instead onsider a query ve-tor and a doument vetor separately as featurevetors. Throughout the experiments, we setk1 = 1:2; k3 = 7; b = 0:75, adopted from theLemur5 default setting.5http://www.lemurprojet.org

2.5 Ad-ho retrieval results2.5.1 Results on the 2004 topisFigure 3 shows the mean average preision(map) results on the 2004 topis. Our baselineuses queries generated without strutural feed-bak or synonyms/bi-grams. The TITLE andNEED setions were used to generate the initialquery vetors.Most notably, strutural feedbak greatly im-proves performane over the baseline, produ-ing 44.20% map. Combining strutural feed-bak with bi-grams and synonyms, the map is45.52%, whih is 7.57% higher than our base-line and 4.77% higher than the 2004 top system(Fujita, 2004).Bi-grams and synonyms are both e�etive onthe 2004 topis. However, upon the inspe-tion of the performane on individual topis, wefound that bi-gram queries are somewhat un-stable { i.e., bi-grams greatly improve perfor-mane on some topis but signi�antly degradeperformane on other topis. Therefore, we de-ided to submit one run with \strutural feed-bak+synonyms" and the other run with \stru-tural feedbak+bi-grams+synonyms".2.5.2 Results on the 2005 topisFigure 4 shows the mean average preision re-sults on the 2005 topis. Overall, the perfor-mane is lower than on the 2004 topis. Thisis not surprising. As mentioned in Setion 2.3,the 2005 topis are apparently more hallenging,presumably as a result of introduing templates.It turned out that unlike the 2004 topis, syn-



run names desriptions map{ synonyms 25.89 (�0.21){ baseline 26.10 {{ bi-grams 26.54 (+0.44)ibmadz05bs strutural feedbak +synonyms+bi-grams 28.59 (+2.49)ibmadz05us strutural feedbak +synonyms 28.83 (+2.73)(york05gm1) (best automati run) 28.88 {{ strutural feedbak +bi-grams 29.04 (+2.94){ strutural feedbak 29.74 (+3.64){ strutural feedbak w/ m=20 30.10 (+4.00){ strutural feedbak w/ m=10 30.16 (+4.06)(york05ga1) (best manual run) 30.20 {Figure 4: Mean average preision results on 2005 topis. The parameter m for strutural feedbakwas set to 30 unless spei�ed otherwise. The numbers in parentheses are the gains ompared toour baseline performane.onyms whih we obtained from several domainspei� databases slightly degraded performaneon the 2005 topis. Bi-grams improve perfor-mane by 0.44% when we do not use the stru-tural feedbak method. However, our �ndingis that, in fat, the strutural feedbak methodalone ahieves higher performane than ombi-nations of strutural feedbak with synonymsand/or bi-grams (whih are our oÆial runs).The map result of our best oÆial run (ib-madz05us) is the seond best among all the au-tomati runs, with a small di�erene (0.05%)from the best run. Using strutural feedbakalone, we are able to produe a map 30.16%,whih is higher than the best automati run andvery lose to the best manual run.It is enouraging to on�rm that the newstrutural feedbak method onsistently per-forms well. Moreover, in our private experi-ments not inluded in this report, we observedthat this new idea outperformed some onven-tional pseudo-relevane feedbak methods whihwe also implemented. We believe that this newapproah warrants further investigation.2.5.3 DisussionOn the ad-ho retrieval task, we experimentedwith a new automati feedbak method whihwe all strutural feedbak, as well as query ex-pansion using synonyms found in domain spe-

i� databases. The former turned out to beonsistently useful, while the usefulness of thelatter is inonlusive.The potential danger in adding synonymsfrom databases appears to be at least two-fold.First, we may introdue irrelevant query termsbeause of `noisy' database entries or the inher-ent ambiguity of the mathed entries. Seondly,and more importantly, even if we an orretlyobtain synonyms, it is not lear, at least to us,what term weights should be assigned to the to-kens resulting from those synonyms (whih areoften multi-word expressions). If the weights as-signed to synonym tokens are too large, theymay, in e�et, `dominate' other terms that hap-pen to have no synonyms. Suh imbalane ofterm weights is a ritial issue, espeially whenrelevant douments must ontain two oneptswith a spei� relationship.On the other hand, strutural feedbak, in ef-fet, automatially adjusts for eah topi, theweight of the additional query vetor �1, basedon an impliitly estimated `on�dene'. Our ex-periene indiates that the resulting method isquite e�etive. It might be useful to investi-gate a similar `fail-safe mehanism' for synonymsfrom external resoures.Our submission system is purely based on gen-eral purpose searh tehnology, without any spe-i� omponents for topi templates and the se-



mantial meanings they imply. Although webelieve a more dediated retrieval system spe-ialized to suh appliations ould yield betterperformane on this partiular TREC task, itis enouraging to see that our system, whih isnot designed spei�ally for this trak, produesgood results with the help of our new struturalfeedbak method.3 CategorizationThe purpose of the Genomis Trak ategoriza-tion task is to triage MGI journal artiles a-ording to one of four information needs. Thereare four sub-tasks orresponding to the informa-tion sought: A (Alleles of mutant phenotypes),G (Gene Ontology annotation), T (Tumor biol-ogy), and E (Embryologi gene expression). Wesubmitted three runs for eah.3.1 MeasurementThe task setting di�ers from typial text ate-gorization tasks in that the evaluation metri,so-alled utility, is spei�ally designed for thistrak, whih penalizes false negatives far moreseverely than false positives.The version used in the evaluation is a nor-malized utility de�ned as Unorm = Uraw=Umax.For a test olletion of douments to atego-rize, Uraw is alulated as follows: Uraw =(ur � TP ) + (unr � FP ), where ur is the rela-tive utility of relevant douments, and unr is therelative utility of non-relevant douments. TPis the true positive and FP is the false positive.Umax is the maximum possible utility under per-fet lassi�ation. With unr = �1, the values ofur used in the evaluation are 17 for A, 64 for E,11 for G, and 231 for T.To maximize utility, speial attention isneeded to determine the ut-o� threshold. Sup-pose that the lassi�ation method an esti-mate the onditional in-lass probability P (Y =1jX), and that we retrieve all douments Xwith P (Y = 1jX) � � for some uto� thresh-old �. Sine the probability of X being TP isP (Y = 1jX), and being FP is 1� P (Y = 1jX),any doument above the optimal threshold �should ontribute to Uraw positively on average.

This implies that we should hoose the thresh-old suh that ur� + unr(1� �) = 0. That is, weshould retrieve every doument X suh thatP (Y = 1jX) � � = �unr=(ur � unr): (5)This method of threshold seletion is also usedin (Dayanik et al., 2004).3.2 Learning methodsWe employ regularized linear lassi�ation withmodi�ed Huber loss and square (and optionally1-norm) regularization, separately for eah task.Let the training data be (Xi; Yi) (i = 1; : : : ; n),where Xi is the vetor representation of a do-ument, and Yi 2 f�1g be the orresponding la-bel. We seek a linear weight vetor ŵ whihminimizes the following objetive funtion:ŵ = argminw " 1n nXi=1 L(wTXi; Yi) + �wTw;#where � � 0 is an appropriately hosen regular-ization parameter, whih is used to stabilize thesolution, andL(p; y) = � max(0; 1 � py)2 if py � �1�4py otherwise :It an be shown (Zhang, 2004) that by using thismethod, we have a probability modelP (Y = 1jX) = max(0;min(1; (1 + ŵTX)=2)):(6)This probability estimate an then be ombinedwith (5) to obtain a retrieval strategy, in whihwe retrieve every doument X suh that ŵTX ��2unr=(ur � unr)� 1.Another more lassial linear model for prob-ability estimation is logisti regression. Sinethreshold determination is partiularly impor-tant to the ategorization task (the performaneis very sensitive to slight mistakes in the thresh-old value), we experimented with a few methodsfor threshold determination, inluding probabil-ity estimation and diret ross-validation. In ad-dition, we experimented with feature weightingshemes suh as binary versus TFIDF, as wellas the ASO semi-supervised learning method



aibmadz05s ASO w/ partially-supervised auxiliary problems; ross-validation threshold.aibmadz05m1,2 aibmadz05s + supervised w/ binary features.eibmadz05s supervised w/ binary features; probability threshold.eibmadz05m1,2 eibmadz05s + supervised w/o bi-gram features.gibmadz05s ASO w/ unsupervised auxiliary problems; probability threshold.gibmadz05m1,2 gibmadz05s + supervisedtibmadz05s ASO w/ partially-supervised auxiliary problems; probability threshold.tibmadz05m1,2 tibmadz05s + supervised on�guration w/ binary features.Figure 5: Desriptions of ategorization runs. m1 and m2 determine thresholds by probability estimation and rossvalidation, respetively. Auxiliary problems for ASO are desribed in (Ando and Zhang, 2005a).briey desribed in Setion 2.1. In this study,we did not attempt to explore ompliated dou-ment representation features, exept for the useof Mesh. Our interests fous on the applia-tion of semi-supervised learning in this senario,as well as threshold determination. The fea-tures we used are: tokens extrated from thetitle, abstrat, and body setions of the jour-nal artiles; and the keywords from the Meshsetions of the orresponding Medline entries.In addition, we use the bi-grams that ombineeah of these tokens and the presene/abseneof "Mouse" in the Mesh setions. No externalknowledge soure other than Medline is used.Although ASO has been shown to e�etivelyexploit unlabeled data on text ategorization,unfortunately, this partiular task is not idealfor experimenting with semi-supervised learn-ing. One issue we enountered here is the avail-ability of unlabeled data, whih should ideallybe taken from the same soure as the test data.However, the soures of test data are biomed-ial journals, to whih we did not have aessfor opyright reasons. As a substitute, we onlyused as unlabeled data a set of Medline abstrats(whih are substantially shorter than full jour-nal artiles) that ontain \mouse", \mie", or\mus". Another issue is the absene of relevantfeatures. The supervised performane seems toindiate that our feature spae does not ontainstrongly disriminating features.6 In this situa-tion, the performane bottlenek is the abseneof relevant features from the designed featurespae rather than the pauity of labeled train-6As mentioned in the report on the 2004 partiipation(Dayanik et al., 2004), we onjeture that there are somefators other than the ontent of the artiles that area�eting the label assignments.

ing examples, and therefore, it beomes harderto bene�t from unlabeled data. The third is-sue is the peuliarities of the evaluation met-ri used in this task: the performane is domi-nated by the proper determination of thresholdvalues. In fat, even with the �rst two issuesmentioned above, ASO was able to produe ap-preiable improvements over the baseline withorale thresholds that are optimally seleted onthe test data. However, the performane gainbeomes insigni�ant when thresholds are esti-mated on the training data, whih implies thata good threshold estimation method is the keyto the suess on this task.Due to the importane of threshold estima-tion, in addition to the simple method basedon (5) and (6), we also onsidered a few moreompliated ideas that an potentially improvethe simple probability estimates. The three runssubmitted for eah sub-task were generated asfollows. We performed ross validation of var-ious on�gurations on the training data. Weseleted and ombined the two best-performingon�gurations by �tting their outputs on theheld-out data (part of the training data) us-ing logisti regression. We applied two typesof threshold determination methods (desribedbelow) to the ombined lassi�er, whih madetwo runs. The third run simply used the best-performing on�guration.One threshold determination method em-ployed is 5-fold ross validation. The other isbased on probability estimation based on (6)for modi�ed Huber loss, and we use the stan-dard probability estimate 1=(1 + exp(�ŵTX))if ŵ is trained using logisti regression. Withunr = �1, we an then threshold the estimated



x=a x=e x=g x=txibmadz05m1 .8492 .8277 .4993 .8931xibmadz05m2 .8482 .8339 .5004 .8998xibmadz05s .8710 .8464 .4717 .8944median .7785 .6548 .4575 .7610best .8710 .8711 .5870 .9433Figure 6: Categorization utility results.probability aording to (5) at 1=(ur + 1).3.3 ResultsFigure 6 shows the utility results of our oÆialruns (desribed in Figure 5) in omparison withthe best and median utility among all the par-tiipants. It shows that our submission systemsare ompetitive. All of our 12 oÆial results arehigher than the median. In partiular, our aib-madz05s (ASO) ahieved the best result amongall the partiipants on sub-task A.One issue with this task is that the results arequite sensitive to the threshold. Therefore wefoused our e�orts on reliable estimation of op-timal thresholds. We did not spend muh timeon engineering features that explore domain spe-i� knowledge, whih might also signi�antlyimprove the overall system performane. Aswe mentioned earlier, semi-supervised learningis not neessarily suitable for this task, due tothe partiulars of the task setting.4 ConlusionThough our partiipation was in the GenomisTrak, we foused on generally appliable ap-proahes. We onsidered the ad-ho retrievaltask from the viewpoint of mahine learning,and on the ategorization task, we experimentedwith a regularized linear lassi�er in supervisedand semi-supervised settings.A entral theme of our study is to explore theuse of unlabeled data, both in information re-trieval and in text ategorization. We showedthat the newly proposed strutural feedbakmethod, based on ideas from semi-supervisedlearning, onsistently improves retrieval perfor-mane.For the purpose of ahieving good perfor-

mane spei�ally on the Genomis trak, aweakness of our approah is that we did notexplore domain knowledge e�etively. For thead-ho retrieval task, we did not inlude anysystem omponents to handle topi templates,whih were designed for this year's Genomistrak. In the ategorization task, no domainspei� information other than Medline Meshterms was used. Although adding some domainspei� omponents may potentially lead to bet-ter results on the two tasks in this year's Ge-nomis trak, it is enouraging to see that goodperformane an already be obtained from thegeneral purpose tehniques we investigated here.AknowledgmentsWe would like to thank James Cooper and Hi-ronori Takeuhi for providing us with the syn-onym data extrated from domain databases.We would also like to thank Anni Coden andDavid Johnson for helpful disussions.ReferenesRie Kubota Ando and Tong Zhang. 2005a. A frameworkfor learning preditive strutures from multiple tasksand unlabeled data. Journal of Mahine Learning Re-searh, 6(Nov):1817{1853.Rie Kubota Ando and Tong Zhang. 2005b. High-performane semi-supervised learning method for texthunking. In Proeedings of ACL-2005.A. Dayanik, D. Fradkin, A. Genkin, P. Kantor, andD. Mardigan. 2004. DIMACS at the TREC 2004 Ge-nomis Trak. In Proeedings of the Thirteenth TextRetrieval Conferene TREC 2004.S. Fujita. 2004. Revisiting again doument length hy-potheses TREC 2004 Genomis Trak experiments atPatolis. In Proeedings of the Thirteenth Text Re-trieval Conferene TREC 2004.S.E. Robertson, S. Walter, S. Jones, M.M. Hanok-Beaulieu, and M. Gatford. 1994. Okapi at TREC-3.In Proeedings of the Third Text Retrieval Conferene(TREC-3).A. Shwartz and M. Hearst. 2003. A simple algorithmfor identifying abbreviation de�nitions in biomedialtext. In Proeedings of the Pai� Symposium on Bio-omputing (PSB 2003).Tong Zhang. 2004. Statistial behavior and onsistenyof lassi�ation methods based on onvex risk mini-mization. The Annals of Statistis, 32:56{85. withdisussion.


